Ametek 9900-Series Analyzers Configurator Software

User's Guide

PN xxx-xxxx, September 2022

A DIVISION OF AMETEK PROCESS & ANALYTICAL INSTRUMENTS

Western Research

Offices

USA – HEADQUARTERS 150 Freeport Road Pittsburgh, PA 15238, USA Phone: 412-828-9040 Toll Free: 1-800-537-6044 Fax: 412-826-0399

USA – Delaware 455 Corporate Boulevard Newark, DE 19702, USA Phone: 302-456-4400 (Main) 1-800-537-6044 (Service) 1-800-222-6789 (Ordering) Fax: 302-456-4444

USA – Texas 4903 West Sam Houston Parkway North Suite A-400 Houston, TX 77041 Phone: 713-466-4900 Toll Free: 1-800-634-8990 Fax: 713-849-1924

CANADA AMETEK Canada, Inc.

2876 Sunridge Way N.E. Calgary, AB, Canada T1Y 7H9 Phone: 403-235-8400 Toll Free: 1-800-661-9198 Fax: 403-248-3550 GERMANY AMETEK GmbH Postfach 2165 D-40644 Meerbusch, Germany OR Rudolf-Diesel Strasse 16 D-40670 Meerbusch, Germany Phone: 49-2159-9136-0 Fax: 49-2159-9136-39

FRANCE AMETEK – APIF Rond point de l'epine des champs Buroplus Bat D 78990 Elancourt, France Phone: 33-1-30-68-89-20 Fax: 33-1-30-68-89-29

CHINA

AMETEK Shanghai (SPL) Room 912, Metro Tower No. 30 Tian Yao Qiao Road Shanghai, 200030 P.R. China Phone: 86-21-6426-7049 Fax: 86-21-6426-7054

CHINA

AMETEK Chengdu Rep Office Room 2408 Zongfu Building No 35 Zongfu Road Chengdu 610016 Sichuan PR China Phone: 86-28-8675-8111 Fax: 86-28-8675-

For other offices not listed here, visit us at www.ametekpi.com.

© 2004–2019 AMETEK Canada, Inc., A Division of AMETEK Process & Analytical Instruments Printed in Canada

This manual is a guide for the use of the Model 9xx-Series Analyzers System 200 Configurator Software. Data herein has been verified and validated and is believed adequate for the intended use of this software. If the software or procedures are used for purposes over and above the capabilities specified herein, confirmation of their validity and suitability should be obtained; otherwise, AMETEK does not guarantee results and assumes no obligation or liability. This publication is not a license to operate under, or a recommendation to infringe upon, any process patents.

Contents

About This Guide1-1How This Guide is Organized1-1Getting Help1-3Help Window1-3More Help1-4User's Guide1-4Controls1-5Graphs1-7Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-14Status LEDs1-17The Dashboard1-18The Connect Panel1-20	Co	ontents	1
About This Guide is Organized 1-1 How This Guide is Organized 1-1 Getting Help 1-3 Help Window 1-3 More Help 1-4 Controls 1-5 Graphs 1-7 Exiting from the Configurator 1-7 Connecting to an Analyzer 1-9 Undo files 1-11 Cleaning up Undo files 1-12 Saving and Restoring Analyzer settings 1-13 Exiting from the Configurator 1-13 Configurator Overview 1-13 Status LEDS 1-17 The Dashboard 1-18 The Connect Panel 1-20 20 Configuring the Analyzer 2-1 21 Configuring the Analyzer 2-1 Call Conditions 2-2 UV Species Concentrations 2-2 System Emperatures 2-2 PMT Voltages 2-3 System Status Opeed	Fi	gures	5
How This Guide is Organized 1-1 Getting Help 1-3 Help Window 1-3 More Help 1-4 User's Guide 1-4 User's Guide 1-4 Controls 1-5 Graphs 1-7 Exiting from the Configurator 1-7 Connecting to an Analyzer 1-9 Undo files 1-10 Selective Undo 1-11 Cleaning up Undo files 1-12 Saving and Restoring Analyzer settings 1-13 NV Memory 1-13 Exiting from the Configurator 1-13 Status LEDs 1-17 The Bashboard 1-18 The Connect Panel 1-20 2 Configuring the Analyzer 2-1 Cell Conditions 2-2 UV Species Concentrations 2-2 System temperatures 2-2 System Status Panel 2-5 Status Codes 2-5 Two Sampling Systems 2-2 PMT Voltages 2-5	1	Introduction	1-1
Getting Help. 1-3 Help Window. 1-3 More Help 1-4 User's Guide 1-4 Controls 1-5 Graphs. 1-7 Exiting from the Configurator 1-7 Connecting to an Analyzer 1-9 Undo files 1-10 Selective Undo. 1-11 Cleaning up Undo files. 1-11 Saving and Restoring Analyzer settings 1-13 NV Memory 1-13 Status LEDs 1-17 The Dashboard 1-18 The Connect Panel 2-10 Q Configuring the Analyzer 2-11 Analyzer Model 2-1 Analyzer Model 2-1 Cell Conditions. 2-2 UV Species Concentrations. 2-2 Status Codes 2-2 Filter Wheel Speed 2-3 System Tanel 2-11 Analyzer Model 2-2 VI Bench Measurement Panel 2-2 VI Species Concentrations. 2-2 System Status Panel 2-3 System Male Systems			
Getting Help. 1-3 Help Window. 1-3 More Help 1-4 User's Guide 1-4 Controls 1-5 Graphs. 1-7 Exiting from the Configurator 1-7 Connecting to an Analyzer 1-9 Undo files 1-10 Selective Undo. 1-11 Cleaning up Undo files. 1-11 Saving and Restoring Analyzer settings 1-13 NV Memory 1-13 Status LEDs 1-17 The Dashboard 1-18 The Connect Panel 2-10 Q Configuring the Analyzer 2-11 Analyzer Model 2-1 Analyzer Model 2-1 Cell Conditions. 2-2 UV Species Concentrations. 2-2 Status Codes 2-2 Filter Wheel Speed 2-3 System Tanel 2-11 Analyzer Model 2-2 VI Bench Measurement Panel 2-2 VI Species Concentrations. 2-2 System Status Panel 2-3 System Male Systems		How This Guide is Organized	1-1
More Help 1-4 User's Guide 1-4 Controls 1-5 Graphs 1-7 Exiting from the Configurator 1-7 Connecting to an Analyzer 1-9 Undo files 1-10 Selective Undo. 1-11 Cleaning up Undo files. 1-12 Saving and Restoring Analyzer settings 1-13 NV Memory 1-13 Exiting from the Configurator 1-13 Configurator Overview 1-15 Status LEDs 1-17 The Dashboard 1-18 The Connect Panel 2-10 Analyzer Model 2-11 Cenfiguring the Analyzer 2-1 Analyzer Model 2-2 UV Species Concentrations 2-2 Sample System temperatures 2-2 VI V Species Concentrations 2-2 VI V Species Concentrations 2-2 System Status Panel 2-3 Set Measurements 2-3 System Status Panel 2-5 Two Sampling Syste			
User's Guide1-4Controls1-5Graphs1-7Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13Exiting from the Configurator1-13Status LEDs1-17Status LEDs1-17The Dashboard1-18The Connect Panel1-20Configuring the Analyzer2-1Cell Conditions2-2UV Species Concentrations2-2UV Species Concentrations2-2Status Panel2-3SEN Measurements2-3System Status Panel2-3System Status Panel2-4Concentrations2-2Filter Wheel Speed2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-13SEN Measurement Panel2-13SEN Analysis Data2-13SEN Analysis Data2-13Sensors2-13Surger System Temperatures2-13Surger System Temperatures2-13Sensors2-14Heaters2-13Surger Concentrations2-14Cell Conditions2-15Status Codes2-5Status Codes2-5St		Help Window	1-3
Controls1-5Graphs1-7Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-11Cleaning up Undo files1-11Saving and Restoring Analyzer settings1-13Exiting from the Configurator1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-2UV Species Concentrations2-2System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3Status Panel2-5Status Codes2-5Status Codes2-5System Status Panel2-10Concentrations2-2UV Bench Measurement Panel2-10Concentrations2-11SEN Measurement Panel2-13SEN 93X Measurement Panel2-13SEN 93X Measurement Panel2-13Sen 93X Measurement Panel2-13Sen 94 System Temperatures2-13Sen 95 System Temperatures2-13Sen 95 System Temperatures2-13Sen 96 System Temperatures2-13Sen 97 System Temperatures2-13Sen 97 System Temperatures2-13Sen 97 System Temperatures2-13		More Help	1-4
Graphs1-7Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-20 2 Configuring the Analyzer 2-1Cell Conditions2-2UV Species Concentrations2-2UV Species Concentrations2-2System Status Panel2-3System Status Panel2-3System Status Panel2-4The Measurement Panel2-3System Status Panel2-4Status Codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-2SEN Measurement Panel2-11Temperature, Pressure and Flow Data2-13SEN Analysis Data2-13SEN Analysis Data2-13Sample System Temperatures2-13Super Status Codes2-13Sen Sensors2-14Heaters2-13Super Status Codes2-13Sen Analysis Data2-13Sensors2-14Heaters2-13Super Status Codes2-14Status Codes2-15Status Codes2-15Status Codes2-15		User's Guide	1-4
Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Configures Concentrations2-22UV Species Concentrations2-22Sample System temperatures2-2PMT Voltages2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-11Concentrations2-2Sitts Codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-12SEN Measurement Panel2-11Temperature, Pressure and Flow Data2-11SEN Analysis Data2-13Sen Nalysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13Sen Nalysis Data2-13Sen Nalysis Data2-13Sen Nalysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13Supple System Temperatures2-13Sen Nalysis Data2-13		Controls	1-5
Exiting from the Configurator1-7Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Configures Concentrations2-22UV Species Concentrations2-22Sample System temperatures2-2PMT Voltages2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-11Concentrations2-2Sitts Codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-12SEN Measurement Panel2-11Temperature, Pressure and Flow Data2-11SEN Analysis Data2-13Sen Nalysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13Sen Nalysis Data2-13Sen Nalysis Data2-13Sen Nalysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13Supple System Temperatures2-13Sen Nalysis Data2-13		Graphs	1-7
Connecting to an Analyzer1-9Undo files1-10Selective Undo1-11Cleaning up Undo files1-11Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Configuring the Analyzer2-2UV Species Concentrations2-2UV Species Concentrations2-2Filter Wheel Speed2-3System Status Panel2-3System Status Panel2-5To Sample System temperatures2-2PMT Voltages2-2UV Bench Measurement Panel2-10Concentrations2-2Status Codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11SEN Measurement Panel2-10Concentrations2-11SEN Measurement Panel2-11SEN Masurement Panel2-13SEN Analysis Data2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13SUV Bench Sensors2-14Heaters2-13UV Bench Rensors2-14Heaters2-14Transducer Ranges2-15		•	
Undo files1-10Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Status Panel2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-2SEN Measurement Panel2-11Sample System Data2-12SEN Measurement Panel2-13SEN Measurement Panel2-11Sen Measurement Panel2-11Sample System Data2-13SEN Measurement Panel2-13Sen Malysis Data2-13Sen Measurement Panel2-13Sen Measurement Panel2-13Sen Measurement Panel2-14Heaters2-13Sen Measurement Panel2-12Sen Measurement Panel2-13Sen Measurement Panel2-13Sen Measurement Panel2-13Sen Measurement Panel2-13Sen Measurement Panel2-14Heaters2-13Sen Mea			
Selective Undo1-11Cleaning up Undo files1-12Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2PMT Voltages2-3Status codes2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Set Masurement Panel2-13System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-11Set N 4nalysis Data2-13Set N 4nalysis Data2-13Set N 4nalysis Data2-13Status Codes2-13Status Panel2-13Set N 4nalysis Data2-13Set N 4nalysis Data2-13Set N 4nalysis Data2-13Super Super Codes2-13Status Codes2-13Set N 4nalysis Data2-13Set N 4n			
Cleaning up Undo files.1-12Saving and Restoring Analyzer settings1-13NV Memory.1-13Exiting from the Configurator1-13Configurator Overview.1-15Status LEDs.1-17The Dashboard1-18The Connect Panel.1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2PMT Voltages2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-2System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Semple System Data2-11Sen Measurement Panel2-13Status codes2-13Status Status Data2-13Status System Data2-13Supplice System Temperatures2-13Status Codes2-13Status Setter Data2-13Status Setter Temperatures2-13Status Analysis Data2-13Status Codes2-13Status Codes2-13Status Codes2-13Status Codes2-13Status Codes2-14Heaters2-13Status Codes2-13Status Codes2-13Stample System Temperatures2-13 <td></td> <td></td> <td></td>			
Saving and Restoring Analyzer settings1-13NV Memory1-13Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Coll Conditions2-2UV Species Concentrations2-2System temperatures2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-2Sitatus Codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-11SEN Measurement Panel2-11Sen Measurement Panel2-11Sen Measurement Panel2-13System Status Panel2-13System System Temperatures2-13System System Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11Sen Malysis Data2-13Sen Analysis Data2-13System Sensors2-13UV Bench Sensors2-13UV Bench Sensors2-13UV Bench Sensors2-13UV Bench Sensors2-14Transducer Ranges2-15			
NV Memory.1-13Exiting from the Configurator1-13Configurator Overview.1-15Status LEDs.1-17The Dashboard.1-18The Connect Panel.1-202 Configuring the Analyzer2-1The Home Panel.2-1Analyzer Model2-1Cell Conditions.2-2UV Species Concentrations2-2Sample System temperatures2-2Filter Wheel Speed2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations.2-2SEN Measurement Panel2-10Concentrations.2-11Temperature, Pressure and Flow Data.2-11SEN Analysis Data2-12SEN Analysis Data2-13SEN Analysis Data2-13SUN Analysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13SUN Beach Sensors2-13V Bench Sensors2-13UV Bench Sensors2-14Heaters2-15			
Exiting from the Configurator1-13Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2Filter Wheel Speed2-3System Status Panel2-5Status codes2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN Masurement Panel2-13SEN Analysis Data2-12SEN Analysis Data2-12SIN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Status codes2-13Sen Analysis Data2-13Sen Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-14Heaters2-14Heaters2-14Heaters2-14Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Temperature, Pressure, and Flow Data2-14Sen Analysis Data2-14 <td></td> <td></td> <td></td>			
Configurator Overview1-15Status LEDs1-17The Dashboard1-18The Connect Panel1-20 2 Configuring the Analyzer2-1 The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2Filter Wheel Speed2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11SEN Measurement Panel2-11Sen Measurement Panel2-11Status codes2-2Two Sampling Systems2-9UV Bench Measurement Panel2-11Sen Measurement Panel2-11Sen Measurement Panel2-11Sen Maurement Panel2-13Sen Analysis Data2-12Sen Analysis Data2-13Sen Measurement Panel2-13Sen Measurement Panel2-13Sen Analysis Data2-14Heaters2-14Heaters2-14Heaters2-14Heaters2-14Heaters2-15			
Status LEDs1-17The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-12SEN Measurement Panel2-11Temperature, Pressure and Flow Data2-11SEN Analysis Data2-11Sen Analysis Data2-13Sen Analysis Data2-13System Temperatures2-13Supple System Temperatures2-13Sen Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13 <td< td=""><td></td><td></td><td></td></td<>			
The Dashboard1-18The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2PMT Voltages2-2PMT Voltages2-2Filter Wheel Speed2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-11Concentrations2-11Sen Measurement Panel2-11Sample System Data2-11Sen Analysis Data2-12Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Supper System Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sence System Temperatures2-13Sence System Temperatures2-14Heaters2-14Heaters2-14Transducer Ranges2-15			
The Connect Panel1-202 Configuring the Analyzer2-1The Home Panel2-1Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11SEN Analysis Data2-13SEN Analysis Data2-13Supple System Temperatures2-13Supple System Temperatures2-13SUV Bench Sensors2-14Heaters2-13Supple System Temperatures2-13Status Codes2-13Sen Analysis Data2-13Concentrations2-14Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13Sen Analysis Data2-13Sen Sensors2-14Transducer Ranges2-14Transducer Ranges2-15			
2 Configuring the Analyzer2-1The Home Panel.2-1Analyzer Model.2-1Cell Conditions.2-2UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations.2-11Temperature, Pressure and Flow Data.2-11SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data.2-13Stanple System Temperatures2-13UV Bench Measurement Panel2-11Sen Analysis Data2-13Temperature, Pressure, and Flow Data.2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15			
Analyzer Model2-1Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN Analysis Data2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15	2	Configuring the Analyzer	2-1
Cell Conditions2-2UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN 993x Measurement Panel2-13SEN 993x Measurement Panel2-13UV Bench Sensors2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		The Home Panel	2-1
UV Species Concentrations2-2Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN 993x Measurement Panel2-13SEN Analysis Data2-13SEN Analysis Data2-13UV Bench Keasurement Panel2-13SEN Analysis Data2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Analyzer Model	2-1
Sample System temperatures2-2PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13SEN Analysis Data2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Cell Conditions	2-2
PMT Voltages2-2Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13SEN Analysis Data2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		UV Species Concentrations	2-2
Filter Wheel Speed2-3SEN Measurements2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Sample System temperatures	2-2
SEN Measurements.2-3System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations.2-11Temperature, Pressure and Flow Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		PMT Voltages	2-2
System Status Panel2-5Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sen Analysis Data2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Filter Wheel Speed	2-3
Status codes2-5Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		SEN Measurements	2-3
Two Sampling Systems2-9UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		System Status Panel	2-5
UV Bench Measurement Panel2-10Concentrations2-11Temperature, Pressure and Flow Data2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Status codes	2-5
Concentrations.2-11Temperature, Pressure and Flow Data.2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data.2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Two Sampling Systems	2-9
Temperature, Pressure and Flow Data.2-11Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data.2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		UV Bench Measurement Panel	2-10
Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15			
Sample System Data2-12SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		Temperature, Pressure and Flow Data	2-11
SEN 993x Measurement Panel2-13SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15			
SEN Analysis Data2-13Temperature, Pressure, and Flow Data2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15		SEN 993x Measurement Panel	2-13
Temperature, Pressure, and Flow Data.2-13Sample System Temperatures2-13UV Bench Sensors2-14Heaters2-14Transducer Ranges2-15			
Sample System Temperatures			
UV Bench Sensors			
Heaters			
Transducer Ranges 2-15			

SEN 993x Sensors – Infrared Spectroscopy	2-19
Non Measured Species in Process Gas	
Interference Setup	
Sensor Signals	
SEN 993x Sensors – SEC	2-22
SEC Linearization	
SEC Interference	2-23
SEC Raw signals	2-23
SEN Sensors – Generic	
SEN Serial Sensors – Nenvitech Net3 Cyber	2-25
Interference Setup	
SEN Serial Sensors – SmartGas EVO	
SmartGas EVO Setup	2-26
SEN Serial Sensors – Axetris LGD	
SEN Sensors – Gas Flow	
Sample Gas Flow	
Sample Pressure	
SEN Sensor Temperature	
Temperature Control	
SEC 993x Common Calculations	
FIR Low pass filter	
Linearization	
UV Bench Calibration	
Zero Calibration	
Span Calibration	
Abort	
Auto Calibration	
The Calibration Table	
Zero Transmittance Table	
Oxygen Calibration Table	
SEN 993x Calibration Panel	
Zero Calibration	
Span Calibration	
Abort	
Auto Calibration	
NenviTech Net3 Cyber Calibration	
SmartGas EVO Calibration	
Bench Setup Panel	
Auto Setup	
Auto Setup Levels	
Lamp Currents	
High Voltage	
Bench Diagnostics Panel	
Photometric Data	
Bench Diagnostics	
HV	
Analysis Panel	
Measurement Cell.	
Analysis Matrix	
Customer I/O Board	
Scaling	
Output Type	

	Calibrating Analog Outputs	
	99xx Integrated Models	
	9xx Models	
	9900 ^{RM}	
	Alarm Limits	
	Alarm Limits	
	Sample System	
	Flow Control State	
	Timers and Contact State	
	Non-Sampling State	
	Normal Sampling Flow	
	Auto Calibration	
	Auto-CAL Setup	
	Auto-CAL Timers	
	Alarms	
	Start Checking	
	Stop Checking	
	Active Alarms tab	
	Alarm History tab	
	Alarm Daemon	
	Factory Settings – Hardware Options	
_		
3	Data Logging and Charting	3-
	Data Acquisition	
	Modbus Traffic	
	Data Logging	
	Recall a Previous Session	
	Charting	
	Strip Charts	
	More Strip Charts	
	A New Set of Charts	
	Chart Options	
	Data Scrolling	
	Cursors	
	The Graph Palette	
	Graph Annotations	
		4-
4	Offline (demo) Mode	•
	Offline mode	
	Preparing for Offline Charts	
	Offline Charts	
	Uses for offline mode	
5	Web Server	5-
	Getting Started	
	Finding the IP Address	
	Navigating	
	HMI vs. UV Bench and SEN Board	
Ar	opendix I – Installing the Software	
•	A Full Install	
	opendix II – The Modbus Register Maps	
Δr		

Appendix III – Preferences

idix III – Preferences	1
Communication Settings	2
Serial Modbus	
Modbus/TCP	7
Adding a new connection	

Figures

Figure 1 – The Context Help	window	
Figure 2 – The Help menu		
Figure 3 – The Connect Pane	el	
Figure 4 – Choosing a Modb	ous connection	
Figure 5 – The Connect swit	ch	
Figure 6 – Selective Undo		
Figure 7 – Cleaning up unus	ed Undo files	
Figure 8 – The Configurator	window, showing the Home p	anel 1-15
Figure 9 – The Menu bar		
Figure 10 – The Web Interfa	ce Home Screen, showing me	nu selection1-16
Figure 11 – Status LEDs		
Figure 12 – The Dashboard.		
Figure 13 – Selecting a Dash	board signal	
Figure 14 – A dashboard iter	n inside the alarm limits	
Figure 15 – A dashboard iter	n in warning	
Figure 16 – A dashboard iter	n in alarm	
Figure 17 – The Connect par	nel, showing the Messages are	a1-20
Figure 18 – The Home panel		
Figure 19 – System Status pa	anel (UV Bench)	
Figure 20 – Valid UV Specie	2S	
Figure 21 – Valid wavelengt	hs	
Figure 22 – Sample System	Status panel	
Figure 23 – Measurement Pa	nel	
Figure 24 – Setting Hold tim	es using the analyzer's HMI	
Figure 25 – The UV Bench S	Sensors panel	
Figure 26 – Temperature cor	ntrol coefficients	
Figure 27 – SEN 993x Therr	nal Conductivity Sensor Setup	
Figure 28 – SEN 993x Infra	red Absorption Spectrography	Setup 2-19
Figure 29 – SEN 993x SEC	Sensor Setup	
Figure 30 – SEN Generic Se	nsor Setup	
Figure 31 – SEN Serial Nerv	vitech Net3 Cyber Sensor	
Figure 32 – SEN Serial Sma	rtGas EVO Sensor	

	Figure 33 – Cali
	Figure 34 – Cali
	Figure 35 – SEN
	Figure 36 – EVO
H	Figure 37 – Ben
LL.	Figure 38 – The
4	Figure 39 – Ana
	Figure 40 – The
R	Figure 41 – The
	Figure 42 – Agg
	Figure 43 – The
>	Figure 44 – Scal
	Figure 45 – Cali
ш	Figure 46 – SEN
	Figure 47 – Ana
	Figure 48 – Con
ш	Figure 49 – Con
R	Figure 50 – Con
tala .	Figure 51 – Con
	Figure 52 — Cu
	Figure 53 – Cus

Figure 33 – Calibration Panel	2-35
Figure 34 – Calibration options	
Figure 35 – SEN Calibration Panel	2-40
Figure 36 – EVO SmartGas status codes, shown on the analyzer's front panel	2-49
Figure 37 – Bench Setup panel	
Figure 38 – The Bench Diagnostics panel for a multi-species analyzer	2-52
Figure 39 – Analysis Setup	2-54
Figure 40 – The Analysis Matrix	2-57
Figure 41 – The Advanced Analysis panel	2-58
Figure 42 – Aggregated UV analysis setup	2-59
Figure 43 – The Customer I/O panel – Analog Outputs	2-61
Figure 44 – Scaling an analog output signal	
Figure 45 – Calibrating analog outputs	2-64
Figure 46 – SEN Signal Assignment Matrix	2-65
Figure 47 – Analog Output Panel with SEN Signal Assignment Matrix	
Figure 48 – Contact Inputs panel – Ametek 9900 ^{RM}	2-67
Figure 49 – Contact Inputs panel – Ametek 99xx	2-67
Figure 50 – Contact assignments with optional Customer I/O module	2-68
Figure 51 – Contact assignments - Ametek 9900 ^{RM}	2-68
Figure 52 — Customer I/O Relays	2-69
Figure 53 – Customer I/O Relays, 9900 ^{RM}	2-73
Figure 54 – SEN Process Alarms	2-76
Figure 55 – The Sample System – Status Trigger panel	2-79
Figure 56 – Setting up faults and warnings	2-79
Figure 57 – The Sample System panel – Common Items	2-81
Figure 58 – Flow control options	2-81
Figure 59 – CEM probe blowback	
Figure 60 – The Sample System – Temperature Zone panel	2-84
Figure 61 – External temperature setup	
Figure 62 – The Sample System – Solenoids panel	
Figure 63 – Sample System Panel – Auto-Cal	2-87
Figure 64 – Auto Calibration setup	2-87
Figure 65 – Sample System Panel – Sample Columns	2-89
Figure 66 – Alarms panel – Setting Alarm Limits	

Figure 67 – Currently active alarms	2-92
Figure 68 – Alarm history	2-93
Figure 69 – Factory Settings for Integrated Configurations	2-94
Figure 70 – Factory Settings for UV Bench Analyzers	2-95
Figure 71 – Factory Settings for SEN Analyzers	2-95
Figure 72 – The Logging Setup panel – UV Bench Signals	
Figure 73 – Logging Setup panel — SEN Signals	
Figure 74 – Simple Strip Charts	
Figure 75 – Six charts, sized to fit your largest monitor	
Figure 76 – Predefined and User-Defined Sets of Charts	
Figure 77 – Choosing a logging group to chart	
Figure 78 – Choosing signals to chart	
Figure 79 – Click inside any graph to create cursors in every graph at that timestamp	
Figure 80 – Graph Selection Tools	
Figure 81 - Annotating a graph	
Figure 82 – A graph with annotations	
Figure 83 – Changing an axis name	
Figure 84 – Customizing a graph axis	
Figure 85 – Adding cursors to a graph	
Figure 86 – Deciding which signals to acquire and log	
Figure 87 – The Web Home Screen	5-1
Figure 88 – The Web server navigation bar	
Figure 89– Data files and directories created by the installer	A1-4
Figure 90 – The Preferences Window	A2-1
Figure 91 – Picking a communications port	A2-2
Figure 92 – Communications settings	A2-3
Figure 93 – Communications settings in the analyzer's HMI	A2-4
Figure 94 – The MGate Manager	A2-7
Figure 95 – Adding a new communication settings	
Figure 96 – Removing a communication setting	

Introduction 1

	This Guide describes the Configurator software for Ametek 9900- series Analyzers. It is used to configure and calibrate the analyzer, and to graph and log data from the analyzer. The Configurator can also be used while performing maintenance or while troubleshooting the analyzer.
	Ametek 9900-series analyzers can be also configured from the front panel of the analyzer. A small number of operations can only be performed using the front panel.
	You can also view the configuration by connecting the analyzer to a web browser (see details on page 5-1).
	For information about the analyzer itself, including how to configure it from the front panel, please refer to the User Manual for the specific analyzer that you have. For example, document PN 903-8726: Model 9900 ^{RM} (Rack Mount) Analyzer User Manual.
About This Guide	 This Guide is for the following AMETEK Western Research analyzers: Models 9900^{RM} and 9900^{WM} Models 992x^{RM} and 992x^{WM} Models 993x^{RM} and 993x^{WM}
	Models other than the 9900 ^{RM} and 9900 ^{WM} can be configured to include a UV Bench, a SEN Sensor board, or both. This Guide covers all of these configurations.

The Configurator screens in this manual are example screens only. Some of the screens are only available if you have installed optional hardware in your analyzer.

How This Guide is Organized

This Guide starts with a description of the user interface conventions used by the software, and of how to view the documentation.

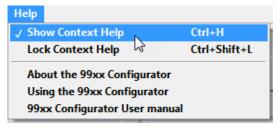
It's followed by a description of how to configure the analyzer, screen by screen. This section covers both the UV Bench and the SEN Process Sensor Controller board, although an individual analyzer may be configured with either or both of these systems-.

Next are the data acquisition and charting functions.

Appendix I covers software installation.

Appendix II is intended for factory use and advanced users, and describes the Modbus Register map spreadsheet.

Appendix III describes the Configurator Preference settings, and how to set up communications ports. It is intended for all users of the software. Help Window


There are several levels of help available in the Configurator.

If you hover the cursor over a control or table, a tip strip pops up with a short description.

For more detailed documentation, you can display a floating help window by clicking the Help button (it turns blue when the floating help window is visible):

You can also display the floating help window by selecting *Show Context Help* from the Help menu, or by pressing Ctrl-H on the keyboard:

The Help window contains information specific to whatever the cursor is hovering over. In many cases, the text is taken from this Guide.

For example, if the cursor is hovering over the Oxygen table on the Home screen:

Oxygen	0.00	%
O2 Temp	0.00	deg C

The floating help window shows you more about the table, and the Modbus registers that the information comes from:

Context Help		
Oxygen		
Oxygen concentration is only available if a dry-application O2 sensor (i.e. Hummingbird Paracube-Alpha/Pm1158, Figaro KE-25, or Hummingbird Paracube-Delta) is installed and enabled. 0 otherwise.		
Oxygen sensor temperature is only available if a Hummingbird Paracube- Alpha/Pm1158 O2 sensor is installed and enabled. 0 otherwise.		
Registers: Reg 76 - O2 concentration - Float 32 - RO Reg 78 - O2 sensor temperature - Float 32 - RO		
● ● ?	Þ	

Figure 1 – The Context Help window

For each register, you see:

- The register number, using standard 1-based numbers. For more information, please refer to the Modbus specification in the analyzer's User Manual.
- The name of the register as found in the Modbus Register Map (see Appendix II).
- The data type of the register, and any scaling factors that will be applied to the register value if it is an integer data type.
- The access level (read, write, or read/write)

More Help

You can also get general help about using the configurator from the Help menu:

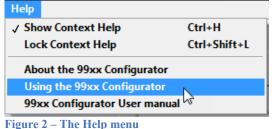


Figure 2 – The freip men

User's Guide

The User's Guide to the configurator (this document) is installed along with the software. You can launch it from the Help menu:

Help			
√ Sho	ow Context Help	Ctrl+H	
Loc	k Context Help	Ctrl+Shift+L	
Abo	About the 99xx Configurator		
Usi	Using the 99xx Configurator		
99x	ex Configurator User manua	l	

You will be taken to a file selection window that is set to the location where the User's Guide can be found:

ame	Date modified	Туре	Size
Alarm Settings	2022-09-15 10:07 AM	File folder	
Chart Window Configurations	2022-09-15 10:08 AM	File folder	
Dashboards	2022-09-15 10:08 AM	File folder	
Logging Selections	2022-09-15 10:08 AM	File folder	
Remote Development	2021-03-23 4:44 PM	File folder	
Saved Configurations	2022-09-15 10:08 AM	File folder	
Test Logs	2022-09-15 11:04 AM	File folder	
99xx Configurator User's Guide, Feb 2022	2022-02-22 10:50 AM	Foxit PDF Reader	8,919 KB
			Portable Document files (*.pdf)

Controls

Buttons

This section describes the items that can appear in a configurator window, and how they work. One important difference between this configurator and others that you may have used, is that everything is live. When you make a change to a screen, any new values are sent to the connected analyzer right away, so there's no "Apply" or "Send" button. If you make a mistake and want to undo it, you can selectively undo any changes that you've made by selecting "Selective Undo" on the main screen. If you simply want to undo everything you've done since last saving the configuration to non-volatile memory on the analyzer, you have several options:

- Restore the configuration from the "Undo file" that's automatically created every time you connect to an analyzer (you can also restore from configuration files that you create manually please see page 1-9 for more information).
- Power cycle the analyzer.

Buttons trigger an action.

The left-hand part of the Configurator window has buttons that control what's displayed in the main part of the window (there are more buttons than are shown here):

The active selection is amber.

Combination Buttons Some buttons contain an LED that indicates something about what the button controls. For example, the Save to NV Memory button illuminates if there are unsaved changes. Clicking the button saves the current analyzer settings to the analyzer's non-volatile memory: 义 Save to NV Memory Refresh Most of the configuration screens have a Refresh button: Refresh Values When you click it, it turns temporarily blue and reads "Refreshing..." while the screen contents are read from the analyzer. It's primarily useful if changes have been made using the analyzer's front panel, and you'd like them to be reflected in the Configurator. **LEDs** LEDs show the status of an operation, action, or task. A dark LED means that the state isn't present on the analyzer. Green means OK, Amber means Warning, and Red means Fault. Checkboxes Checkboxes work just like you'd expect them to: Log retroactively If the inside of the checkbox is white, you can change the setting. If it's grey, you can't. Menus Pop-up menus usually have a little downward pointing triangle: Calibration Action **Full Auto Calibration** When you click one, a menu appears. You select an item by clicking it. Most pop-up menu selections, such as those in the dashboard, take effect right way. In some cases where a time-consuming process is involved, such as calibration, there is an action button to the right of the pop-up menu that starts the action: Calibration Action Start Manual Span H2S

Introduction and Overview | 1-6

Calibration

Manual Zero UV	
🗸 Manual Span H2S	Start Calibration
Manual Span SO2	Abort
Manual Span SO 🗟	Calibration
Manual Span UV-4	
Manual Span UV-5	
Manual Span UV-6	
Manual Span UV-7	Unit of
Manual Span UV+	Measure
Manual Zero O2	PPM
Manual Span O2	%
Manual Zero UV & O2	PPM
Auto-CAL0	%

Tables

Temperature Zone

	Bench	Cell	Bench Board	02
Control setpoint (deg C)	0.0	0.0		
Kp (deg C)	0.0	0.0		
Ti (sec)	0.0	0.0		
Duty cycle (%)	0	0		
Present reading (deg C)	28.26	24.76	27.89	0.00

Much of the information in the configurator is shown in tables, such as the one above. When you change an item, the new value is immediately sent to the analyzer, but not saved in its non-volatile memory.

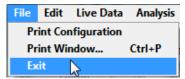
Cells with a light blue background are live value cells. You can't change them.

Cells with a grey background are disabled. Any changes you make to them are ignored.

You can move between cells using the tab key, the return key, or the arrow keys. Live value cells and disabled cells are skipped over. Or you can just click in a cell that you want to change.

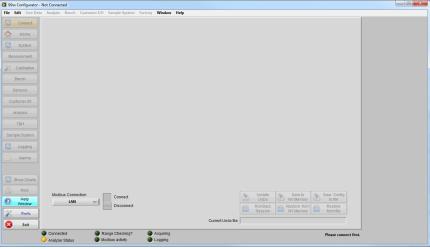
The light yellow stripes on alternate lines are a visual aid to help you follow lines of the table. If you don't like them, you can switch them off in the Preferences window (see Appendix III – Preferences).

Graphs have so many options that they have their own section in this User's Guide – please refer to the Data Logging and Charting section on page 3-3-1.


Exiting from the Configurator

Graphs

To exit from the Configurator, click the Exit button, or the window's close icon:


You can also select "Exit" from the File menu:

If you haven't saved your changes to Non-volatile memory, you'll get a reminder alert and a chance to save them before the Configurator actually exits. If you haven't already installed the software, please refer to Appendix I – Installing the Configurator Software.

Appendix III describes the Preferences screen, which lets you specify communication settings, and contains some tips for troubleshooting connection issues.

When you launch the configurator, the *Connect* panel is displayed:

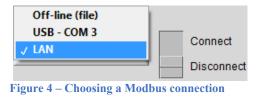


Figure 3 – The Connect Panel

If this is the first time you are using the Configurator, this would be a good time to review the connections that are listed in the *Preferences* window, and make sure that they include the way you intend to

connect to an analyzer. Click Prefs, and turn to Appendix III for more information.

In most cases, you can just pick the connection that you'd like to use from the pop-up menu shown below, and click the Connect switch:

The Connect switch and the Connected LED turn green when the analyzer is connected:

For your convenience, the Configurator remembers your connection choice, and initially positions the pop-up menu to the connection you used last time.

You should briefly see a message as the Configurator establishes communications with the analyzer. After that, you'll see a new window appear briefly while the configurator reads every Modbus register on the analyzer. This snapshot of the analyzer's configuration is saved as an *Undo file*.

🛃 Creating	a session undo file.	
Sa	aving values for:	
Q	Queueing values for Modbus Process	

If the Configurator detects an analyzer configuration that doesn't match the configuration specified in your preferences, it will ask you what to do:

₽	×
99xx, but an inte	
UV 99xx	99xx UV + SEN

If all goes well, the Configurator will take you to the *Home* screen: a quick visual summary of the analyzer's state. It's described on page 2-1.

The window's title bar is updated to show the analyzer model and serial number:

۸	99xx	Serial	#01234567	890123456780
F	ile	Edit	Live Data	Analysis

If things don't go well, it's likely that the communication settings are incorrect. Please refer to *Appendix III* — *Preferences* for ways to resolve communications issues.

Undo files

When you make changes to a Configurator screen, the new values are immediately sent to the analyzer. This is why there are no buttons labeled "Send to Analyzer", or "Apply".

Every time you connect to an analyzer, the entire configuration is read from the analyzer, and is written to a spreadsheet-format file. This file is located in the directory you specify in *Preferences*, in a subdirectory named *Saved Configurations*. The file name has the form:

Analyzer serial number Undo File date – sequence number.csv

The name of the Undo file is shown on the Connect panel:

To restore all configuration settings from the most recent Undo File, click "Roll Back Session".

To create an updated Undo file, click "Update Undo". A new Undo file is created, with an incremented sequence number at the end of the name.

If you make a mistake and don't remember what the original value was, you have several options:

- You can selectively undo any changes that you've made during the current session. See the next section, *Selective Undo*, for more on this powerful feature.
- Click "Roll Back Session" to restore the analyzer configuration from the current Undo file.
- Click "Restore from file" to restore from an older Undo file, or another saved configuration.
- Click "Restore from NV Memory".
- Power cycle the analyzer.

Selective Undo

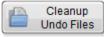
The Configurator operates by modifying Modbus registers on the analyzer. Whenever you make a change, the Configurator keeps track of the old and new values of every register that is affected by the change.

You can selectively choose to Undo any of those changes. Start by selecting *Selective Undo* from the main menu, or choose its keyboard shortcut (Ctrl + Shift + Z):

Oops!

Aodbus Register Changes Register name	Register #	From value	To value	Timestamp	Undo?	
Static cell pressure	325	670.0	680.000000	1:03:00 PM		C Refresh
Aggregated UV result name	617	Agg	Agg	1:12:02 PM		
Aggregated UV result unit	644	ppm	ppm	1:12:02 PM		
Species1 name	593	H2S	H2S	1:12:02 PM		
Species1 unit	620	ppm	ppm	1:12:02 PM		
Species2 name	596	ABC	ABC	1:12:02 PM		
Species2 unit	623			1:12:02 PM		
Species1 matrix element 3	387	25.1230	25.123000	1:12:02 PM		
Species3 name	599	COS	COS	1:12:02 PM		
Species3 unit	626	ppm	ppm	1:12:02 PM		
Species4 name	602	DEF	DEF	1:12:02 PM		
Species4 unit	629			1:12:02 PM		
Species1 matrix element 5	391	1.0325	1.032500	1:12:02 PM		
Species5 name	605		H2	1:12:03 PM		
Species5 unit	632			1:12:03 PM		
Species6 name	608			1:12:03 PM		
Species6 unit	635			1:12:03 PM		
Species7 name	611			1:12:03 PM		
Species7 unit	638			1:12:03 PM		
Species8 name	614	NDr	NDr	1:12:03 PM		
Species8 unit	641	ppm	ppm	1:12:03 PM		
Species3 matrix element 3	435	1.3250	1.325000	1:12:03 PM		
Species8 matrix element 5	559	39.2200	39.220000	1:12:03 PM		
Species5 unit	632		ppm	1:12:05 PM		
Species6 name	608		H2S	1:12:09 PM		🛛 🖉 Undo
Species6 unit	635		ppm	1:12:10 PM		🥙 Selecte
Species3 matrix element 3	435	1.3250	1.325000	1:12:56 PM		
Species6 name	608	H2S		1:12:56 PM		🛛 🔀 🛛 Done

Every change you've made appears in the following window:


Figure 6 – Selective Undo

Select the items that you wish to undo by selecting the checkbox on the right of each row, and click *Undo Selected*.

The changes you selected are reversed, and the window is refreshed, showing you the effect of the Undo action.

Click *Done* to dismiss the window. You can also leave the window open while you continue to use the Configurator, To update the window, click the *Refresh* button in the upper right corner of the window.

Cleaning up Undo files

Over time, you may accumulate quite a few Undo files. You can remove them manually, or you can click *Cleanup Undo Files* to bring up a dialog that shows how many undo files are in the *Saved Configurations* directory. You also see how many there are for just the currently connected analyzer:

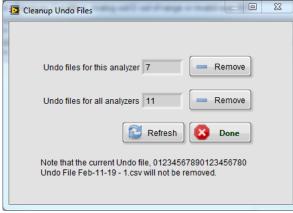


Figure 7 - Cleaning up unused Undo files

You can remove just the Undo files for the currently connected analyzer, or all of the accumulated Undo files. In either case, the current Undo file will be left alone.

Saving and Restoring Analyzer settings

You can also save the analyzer's configuration at any time by clicking "Save Config to File". You'll be asked to name the file. By default, it will be saved in the same directory as the Undo files.

To restore from either a session undo file, or from a snapshot you made yourself, click "Restore from File". You'll be asked to locate the file, after which all of the writable registers in the analyzer will be set to the values that were stored in the file. To retain these through an analyzer power cycle, don't forget to click *Save to NV Memory*.

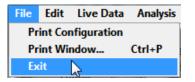
Save to NV Memory

We recommend that you make a reference copy of the analyzer configuration parameters from time to time. This file can then be used to restore all parameters to their original settings in the event of an EEPROM failure, such as it being physically or electrically damaged, or if it is being replaced.

NV Memory

The analyzer stores all of its configuration parameters in non-volatile memory. On power-up, it transfers all of those values into working memory.

To save all of the changes that you've made in the analyzer's working memory into non-volatile memory, click "Save to NV Memory". To copy a saved configuration from non-volatile memory into working memory, click "Restore from NV Memory".



Exiting from the Configurator

To exit from the Configurator, click the Exit button, or the window's close icon:

You can also select "Exit" from the File menu:

If you haven't saved your changes to Non-volatile memory, you'll get a reminder.

Configurator Overview

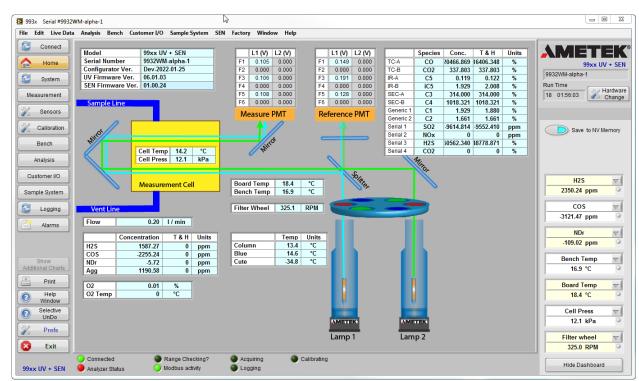


Figure 8 - The Configurator window, showing the Home panel

If you haven't already installed the software, please refer to Appendix I — Installing the Software. You may need "local administrator" or other security privileges to install the software, but you don't need to be an administrator to run the software.

Before beginning, you should have already installed and commissioned the analyzer (and set up additional hardware, if required) as explained in the analyzer *User Manual*.

Once you've installed the software and connected to an analyzer (see the previous section), you'll see the Home panel shown above.

The model and serial number of the analyzer are shown in the title bar:

The right-hand part of the window shows the *Dashboard* – a customizable area that shows information about the analyzer, half a dozen live values, and whether you have made changes that have not been saved to non-volatile memory. It's covered in more detail in the next section.

The main part of the window displays panels that you select using the buttons on the left hand size of the window (or the menu bar).

In Figure 8 above, the Home button has been selected, so the Home panel is visible.

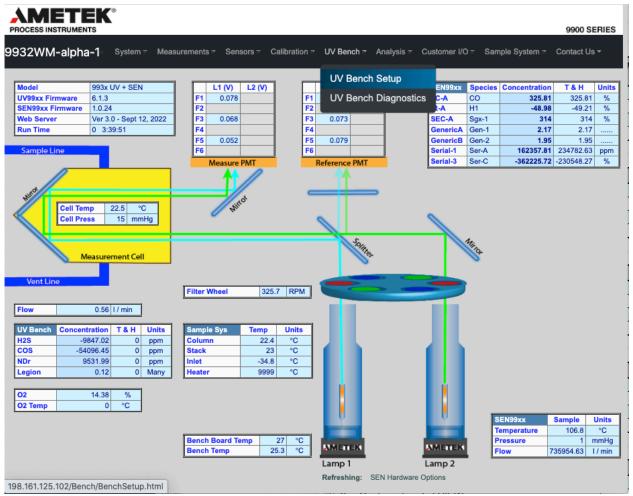
In the following figure, the System Status panel has been selected:

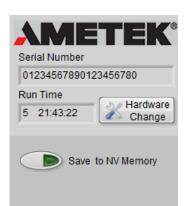
You can also select which panel to view using the menu bar at the top of the window:

🗼 99xx Serial #0123456	5789	90123456780		
File Edit Live Dat	a	Analysis	Bench	Custo
Count		Analysi	s Setup	
Connect	Ν	Advanc	ed Analy	sis
Home	E	Calibra	tion	63
Figure 0 The Monu ber				

Figure 9 – The Menu bar

The web interface uses a similar menu system:




Figure 10 - The Web Interface Home Screen, showing menu selection

Status LEDs

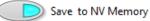
The bottom part of the Configurator contains several status LEDs:

 Connected Analyzer Status 	Range Checking? Modbus activity	Acquiring Logging	Calibrating			
Figure 11 – Status LEDs						
Connected	The Connected LED should be green while you are working with an analyzer. If it isn't, you'll need to select the Connect panel, and re- connect to the analyzer.					
Analyzer Status	This is the analyzer health as reported by the analyzer Green: OK Amber: Warning Red: Fault					
Range Checking?	Green if the Confi Range (Alarm) lin	•	ntly checking			
Modbus Activity	Flashes green when Modbus packets are read or written					
Acquiring	Green when the C for logging or grap	0	equiring data			
Logging	Green if values are being logged to a spreadsheet file					
Calibrating	Green if the UV be calibrated, or if the being calibrated. T calibration status of optional Customer	e optional SEN This LED does n of an analog out	board is ot show the			

The Dashboard

SO2 💎
5100.237 PPM
SO ▽
0.114 PPM 🎱
NDr 🗸
5.025 ppm 🎱
Eleverate -
Flow rate
0.10 L-per-min O
UV+ 🗸
UV+ 8355.423 ppm
8355.423 ppm 🥥
8355.423 ppm ♀ Cell Temp ▽
8355.423 ppm 🥥
8355.423 ppm ♀ Cell Temp ▼ 16.25 degC ♀
8355.423 ppm Cell Temp 16.25 degC Bench Temp ▼
8355.423 ppm ♀ Cell Temp ▼ 16.25 degC ♀
8355.423 ppm Cell Temp 16.25 degC Bench Temp ▼

Figure 12 – The Dashboard


The Dashboard lets you monitor signals generated by the analyzer.

At the top are the analyzer serial number, and how long it has been running (days hours: minutes: seconds).

You can also update the hardware configuration on the Analyzer if optional hardware has been installed or removed:

The *Save to NV Memory* button lights up if you have made changes to the analyzer configuration, but haven't saved them to non-volatile memory (NVRAM). Click the button to save them.

You can display seven items in the lower part of the dashboard by simply picking them from the pop-up menus (click the little downward pointing triangles):

H2S	
0.063 PPM	0
\$02	-
H2S	•
√ SO2	
so 🗟	
UV-4	
NDr	

Figure 13 – Selecting a Dashboard signal

The software remembers your selections, and restores them the next time you run the configurator. The small LED to the right of each item shows whether it's inside the alarm limits (green) or not (amber or red). If you haven't set up alarms for a signal, the LED will be grey.

SEN Oven Heater	∇
113.5 °C	۲

Figure 14 – A dashboard item inside the alarm limits

Board Temp	∇
17.2 °C	•
Figure 15 – A das	hboard item in warning

SEN Air / Block / Plate	∇
111.77 °C	۲

Figure 16 – A dashboard item in alarm

The signals that appear in the pop-up menu are determined by the Modbus register map: they are the rows with "Yes" in the *Dashboard?* column. You can add or remove Dashboard signals by editing the register map – see Appendix III for more information.

Additionally, only species that are currently marked as being valid by the analyzer appear in the menu (you can see which of them have been marked valid by looking at the System Status panel – see page 2-5).

If you find the dashboard to be distracting, you can hide the live values by clicking "Hide Dashboard". This also eliminates the associated Modbus traffic.

The Connect Panel

le Edit Live Da	ta Analys	is Bench Custo	mer I/O Sa	mple Syste	m Factory Wind	ow Help								
Connect		Messages											AMET	Έ
Home	() 0	2019-01-24 4:52	:33.523 PM	Info	Connected			_					Serial Number 01234567890123456 Run Time	e Har
Measurement Calibration													8 20:52:58	
Bench													Save to NV	RAM
Customer I/O														
Analysis T&H													H2S -0.204 PPM	_
Sample System													SO2 0.252 %	_
Logging													50 0.083 PPM	
Alarms														
Show Charts													L1-F1 msr-PMT	-
Print	Мо	dbus Connection	_	Connect					Update	Save to	N 🏊	Save Config	8.999 V	
Help Wnidow		LAN		Disconnec	t				UnDo Roll Back Session	Save to NV Memo Restore fro NV Memo	ny 🖆 om 📠	to file Restore from file	Bench Temp 27.16 degC	
Prefs							Current Undo file:	01234		56780 Undo File J	- /		Board Temp 27.03 degC	

Figure 17 – The Connect panel, showing the Messages area

Most of the items in the Connect panel were covered in *Connecting to an Analyzer*, on page 1-9.

There is a *Messages* area that displays error and information messages. These messages are also logged in a directory named Messages, which is a subdirectory of the *Test Logs* directory specified by your preferences (see Appendix III – Preferences – by default, c:*Ametek Configurator\99XX\Test Logs\Messages*).

You can use the Configurator even when you are not connected to an analyzer. For more information, please see the "Off-line Mode" chapter on page 4-1.

2 Configuring the Analyzer

🙏 993x Serial #9932WM-alpha-1 × File Edit System Measurements Calibration Sensors Analysis UV Bench Customer I/O Sample System Window Help R Connect ETEK L2 (V) L2 (V) SEN99xx Units Speci Home Serial Number 35182.875 35182.875 9932WM-alpha-1 F1 0.052 0.078 TC-A 00 % 99xx UV + SEN Configurator Ver. UV99xx Firmware F2 F3 F4 Ver 3.0 - 20220916 IR-A 63.626 9932WM-alpha F2 F3 F4 F5 H1 H2 63.626 C UV99xx Firmware 06.01.03 SEN99xx Firmware 01.00.24 System 0.062 0.223 IR-B Run Time SEC-A Sgx-' Gen-' 314.000 314.000 % 0 01:28:03 Settings Measurement F 2.002 0.117 0.160 Generic 2.002 F6 Generic 2 Gen-2 1.783 Sensors Ser-A Ser-C Ser-D Serial 1 64.000 64.000 ppm Reference PM Serial 3 57125.391 57125.391 Calibration X Save to NV Memory Serial 4 Bench Cell Temp 17.4 °C Cell Press 2.0 kPa Analysis Customer I/O splitter ∇ Sample System easurement Cell Logging H2S ∇ Filter Wheel 325.3 RPM 20066.49 ppm Alarms Flow 0.64 1/min Cell Press ∇ UV Bench 2.0 kPa Т&Н Units 20066.49 0 H2S ppm ppm 14683.62 17747.37 Board Temp cos ∇ ppm Many 20.8 °C NDr 0 Legion 15049.99 Print Legior ∇ Temp Units 16.9 °C 17.8 °C O2 O2 Temp 14.38 Sample System 15049.99 Man Selective UnDo Coli °C °C °C Stack 0 COS ∇ Help Inlet -34.8 -114683.62 ppm Sample Units 109.7 °C 0.1 kPa SEN99x Prefs Temperat Column temperature 😾 Board Temp 20.9 °C Bench Temp 18.2 °C Pressure AMETER METE 8 Exit Flow 37755.25 1 / mir 16.9 °C Range Checking? Calibrating Connected Acquiring Hide Dashboard Analyzer Status Modbus activit Logging 99xx UV + SEN

The Home Panel

Figure 18 – The Home panel

Analyzer Model

The Home panel is intended to provide an overall picture of the analyzer's operation. The diagram is a functional view of the UV Optical Bench and any attached sensors, including those attached to the optional SEN99xx board. It's not available when connected to analyzers that don't have an Optical Bench.

You can't change the values displayed on this screen (the registers are read only). For information about each of the items in the Home screen, remember that you can hover the cursor over them. You can also display a floating help window to show more information, such as which Modbus registers provide the values (see page 1-3).

All measurements are in SI units of measure¹.

Model	99xx UV + SEN
Serial Number	9932WM-123456
Configurator Ve	r. 3.21
UV Firmware Ve	er. 06.01.03
SEN Firmware V	/er. 01.00.24

¹ Strictly speaking, the analyzer does not use SI-10 base units. It uses cm for length, deg C for temperature, and either mm Hg or kPa for pressure.

Depending on the model, some items will not be displayed. For example, *SEN Firmware Ver* is only displayed when connected to an analyzer with a SEN board.

Cell Temp	11.6	°C
Cell Press	12.1	kPa

Measurement cell pressure and temperature are available for all models of the 99xx that contain an optical bench, but only if optional sensors have been installed (they are zero otherwise). See page 2-11 for more information.

	Concentration	T & H	Units
H2S	-0.795	0.000	PPM
SO2	0.072	0.000	%
SO	0.193	0.000	PPM
UV-4	0.497	0.000	%
NDr	-0.287	0.000	
UV+	-0.989	0.000	ppm

This table only shows species that have been marked as being valid by the analyzer. To see which species have been so marked, please see the System Status panel described on page 2-6.

Sample Sys	Тетр	Units
Zone1	23.33	deg C
Zone2	22.45	deg C
Zone3	-34.82	deg C

This table is only visible if the optional sample system has been installed. You can assign names to each of the three temperature zones (see page 2-84). Temperature measurements are always shown in degrees Celsius. If an oven temperature RTD has been installed, the oven temperature is also displayed.

	L1 (V)	L2 (V)		L1 (V)	L2 (V)
F1	0.183		F1	0.153	
F2			F2		
F3	0.108		F3	0.237	
F4			F4		
F5	0.029		F5	0.030	
F6			F6		
Measure PMT			R	eference	PMT

The Optical Bench contains two photomultiplier tubes that measure ultraviolet light intensity. On motorless analyzers, the wavelengths used are L1F1, L1F2, and L2F6. On motorized analyzers, all six

UV Species Concentrations

Cell Conditions

Sample System temperatures

PMT Voltages

possible filter positions are shown, even if they are not configured for that analyzer. Invalid lamp + filter combinations are greyed out.

Filter Wheel Speed

Filter Wheel 324.7 RPM

The measured speed of the filter wheel. Nominally 325 RPM.

SEN Measurements

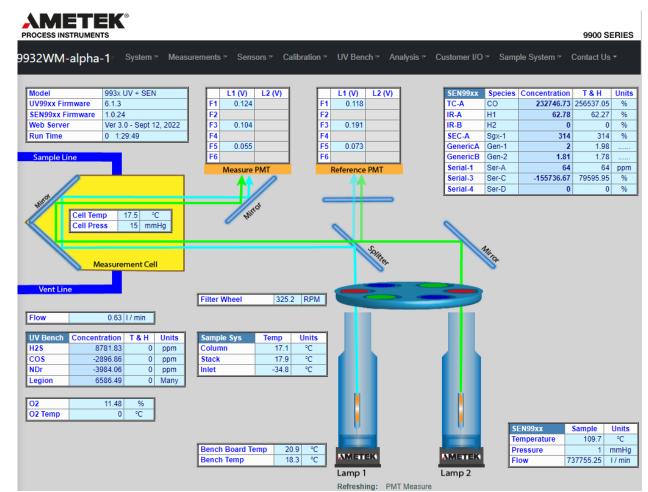
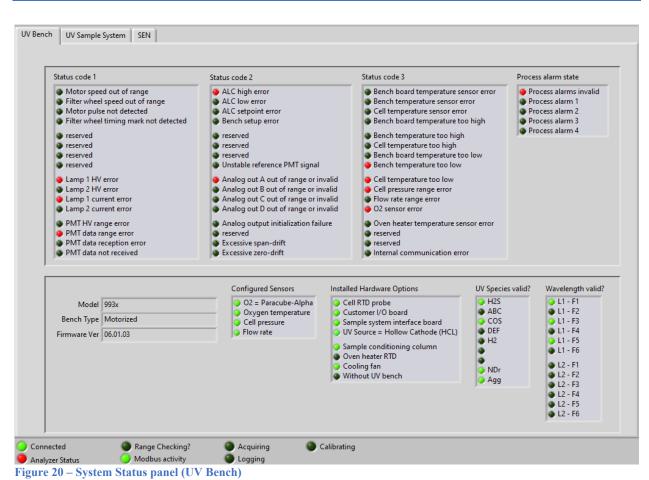
If an optional SEN99xx board has been installed, the gas concentrations for all configured SEN sensors are shown.

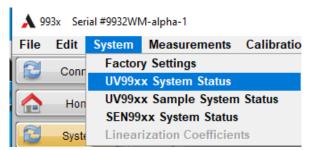
	Species	Conc.	T&H	Units
TC-A	CO	19631.004	19631.004	%
TC-B	CO2	337.804	337.804	%
IR-A	C5	0.108	0.108	%
IR-B	iC5	1.880	1.880	%
SEC-A	C3	314.000	314.000	%
SEC-B	C4	1018.310	1018.310	%
Generic 1	C1	1.929	1.929	%
Generic 2	C2	1.636	1.636	%
Serial 1	SO2	10642.481	10642.481	ppm
Serial 2	NOx	0	0	ppm
Serial 3	H2S	58136.687	58136.687	%
Serial 4	CO2	0	0	%

Gas Sample Conditions

If an optional SEN99xx board has been installed, you can also see the conditions of the sample gas:

SEN99xx	Sample	Units
Temperature	109.4	°C
Pressure	0.1	kPa
Flow	\$7755.25	l / min


Figure 19 – The Home panel in a browser


The Home panel, along with all of the other panels, is also available from any browser. See section 5 of this Guide for more details.

System Status Panel

The System Status panel gives you an overall indication of the analyzer's health. To view it, select "System" from the buttons on the left side of the window, or select *System Status* from the menu bar:

If the meaning of an indicator isn't immediately clear, you can display the Context Help Window (Ctrl-H), and hover the cursor over that indicator to get more information about it.

Status codes

The three status codes all signal error conditions on the attached analyzer. They are red when the condition is present, and dark otherwise.

When a status code changes, a message is generated and displayed in the Messages part of the Connect panel. In addition, the message is logged in a spreadsheet file located in the *Messages* subdirectory of the Test Logs directory (see Appendix III – Preferences for the location of this directory).

These status codes are monitored by the analyzer. When a status code changes, and the particular item has been assigned a "warning" or "error" status in the Customer I/O – Relays panel (see page 2-72), the "Relay Status Output Bitmask" register is updated by the analyzer. The color of the Analyzer Status LED at the bottom of the Configurator window is determined by this register.

The Analyzer Status LED at the bottom of the main window is red if faults are present, amber if warnings but no faults are present, and green otherwise.

Valid Species

JV Species valid?	
H2S	
SO2	
🥥 SO	
🥥 UV-4	
UV-5	
UV-6	
UV-7	
ODr	
🥥 UV+	

The analyzer maintains a list of UV-absorbing species that it considers to be valid (register 231), based on the analysis matrix and the analysis algorithm.

The Configurator will only show the names of valid species in pop-up menus, and will only let you acquire and chart valid species.

Valid Wavelengths

Wavelength valid?	
L1-F1	
L1-F2	
L1-F3	
L1-F4	
🥥 L1 - F5	
L1 - F6	
L2 - F1 L2 - F2 L2 - F3 L2 - F4 L2 - F4 L2 - F5 L2 - F6	

Figure 22 – Valid wavelengths

The analyzer also maintains a list of valid wavelengths (register 230), based on the analysis matrix.

The Configurator will let you select any lamp and filter combination, regardless of whether it is valid or not.

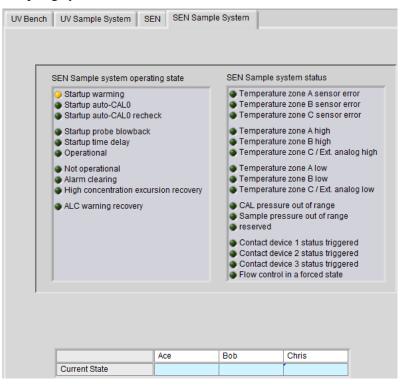
UV99xx Sample System Status Panel

 Temperature zone A Temperature zone	B sensor error C sensor error A high B high C / Ext. analog high A low B low C / Ext. analog low f range ut of range atus triggered atus triggered	 Startup v Startup a Startup a Startup a Startup f Startup f Startup t Operation Not ope Alarm cl High control 	auto-CÁLO auto-CALO recheck probe blowback time delay onal rational
Contact device 3 st Flow control not A Sample System Temper	UTO		
Contact device 3 st Flow control not Al Sample System Temper	UTO atures Temperature	Units	[
Contact device 3 st Flow control not Al Sample System Temper Column	atures Temperature 14.4	deg C	[
Contact device 3 st Flow control not Al Sample System Temper	UTO atures Temperature		(

Figure 23 – Sample System Status panel

If the optional Sample System has been installed, the Sample system tab can be selected by clicking the Sample System tab on the System Status panel, or from the main menu:

	Sample System Window Help					
ĺ	UV99xx Sample System Status					
ł	UV99xx Status Triggers					
-	UV99xx Temperature Zones					
-	UV99xx Flow Control					
+	UV99xx Auto Calibration					
1	Sample Conditioning Columns					
_						


You can see the operating state of the sample system, and any fault conditions that the sample system has detected.

The current sample system zone names and temperatures are also shown.

The sample system has three dry contact inputs, each of which can be assigned a name (in the Sample System panel, under the Status Trigger tab). This panel shows whether the contact is currently open or closed. You can specify whether the contact is normally open or closed in the Sample System panel, under the Status Trigger tab.

It's possible to configure a 99xx analyzer with two sampling systems — one attached to the UV Bench, and one to the SEN board.

In this case, an additional tab appears, showing the status of the SEN sampling system:

This tab also appears if an analyzer has a SEN board with a sampling system, but no UV Bench.

Two Sampling Systems

UV99xx Measurement Panel

Connect	UV99xx SEN99xx							
A Home								
	Concentrations					Hold state	Sample Source	🔁 Refresh
C System	Concentrations	Concentration	Track & Hold	Unit	Hold Time (secs)			
Measurement	H2S	5222.37	0	ppm	1	 Track Hold 	 n/a or other Process Stream 	
Measurement	ABC	OLLL.OT		PP		Hold	O Flocess Stream	
Sensors	COS	26916.02	0	ppm	3			
a Jensors	DEF							
2 Calibration								
Bench								
	NDr	-3352.50	0	ppm	8			
Analysis	Legion	10645.91	0	Many	9			
	Oxygen concentration	14.38	0	%	10			
Sample System		Reading	Unit					
	Bench board temperature	21.4	°C					
C Logging	Bench temperature	18.9	°C					
Logging	Bench temperature Cell temperature	18.9 17.6	°C °C					
	Bench temperature Cell temperature Cell pressure	18.9 17.6 2.0	°C °C kPa					
	Bench temperature Cell temperature Cell pressure Flow rate	18.9 17.6 2.0 0.63	°C °C kPa I/min					
	Bench temperature Cell temperature Cell pressure	18.9 17.6 2.0	°C °C kPa					
	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature	18.9 17.6 2.0 0.63 0	°C °C kPa I/min					
Alarms	Bench temperature Cell temperature Cell pressure Flow rate	18.9 17.6 2.0 0.63 0	*C *C KPa I/min *C					
Alarms	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperature	18.9 17.6 2.0 0.63 0 e Data Temperature	°C °C kPa I/min °C					
Alarms Show Charts	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperatur	18.9 17.6 2.0 0.63 0 e Data Temperature 17.5	°C kPa I/min °C Unit °C					
Alarms Show Charts	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperatur Column Stack	18.9 17.6 2.0 0.63 0 e Data Temperature 17.5 18.4	°C °C kPa I/min °C °C °C °C					
Alarms Alarms Show Charts Print Selective UnDo	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperatur	18.9 17.6 2.0 0.63 0 e Data Temperature 17.5	°C kPa I/min °C Unit °C					
Alarms Alarms Show Charts Print Selective UnDo	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperatur Column Stack	18.9 17.6 2.0 0.63 0 e Data Temperature 17.5 18.4	°C °C kPa I/min °C °C °C °C					
Alarms Alarms Show Charts Print Selective UnDo	Bench temperature Cell temperature Cell pressure Flow rate Oxygen temperature Sample System Temperatur Column Stack	18.9 17.6 2.0 0.63 0 e Data Temperature 17.5 18.4	°C °C kPa I/min °C °C °C °C					

Figure 24 – Measurement Panel

The Measurement panel shows the current concentrations of each species measured by the UV Bench. Species that the analyzer has not marked as being valid are greyed out.

You can tell the analyzer whether to hold concentration results, and specify how long concentration results will be held in the Track and Hold registers. The Track and Hold concentration results are also used when live results are unavailable during a calibration.

If the hold time for a species is 0, the corresponding concentration result is held until the analyzer stops holding concentration results.

If the hold time for a species has a positive value, the result is held for the time specified and returns to tracking when the time expires, unless at the end of the specified hold time, the switch is still set to "Hold". In that case, the hold continues until the switch is set to "Track".

TRACK-HOLD		Hold Time (sec)	
	so2	0	
	N02	0)	
	NO	0)	
	S02:HR	0)	
	NOx	0)	
	02	0	

You can also set hold times using the analyzer's HMI:

Figure 25 - Setting Hold times using the analyzer's HMI

ConcentrationsThis table shows the concentrations and units of measure for the UV-
absorbing gas species that are currently configured for this analyzer,
plus the aggregated Species concentration.When NOx measurement is enabled in the Algorithm bitmask
(register #321.b3), the aggregated Species is NOx, which is the sum
of Species2 (NO2) and Species3 (NO) concentrations.When the Advanced Analysis panel is available and NOx

When the Advanced Analysis panel is available and NOx measurement is not enabled in the Algorithm bitmask, the Species to be aggregated is defined by the Aggregated Species inclusion bitmask (REG#761) and the Species Factors (register #802-816).

For more information on Aggregated Analysis, please refer to Aggregated UV Results Setup on page 2-58.

If an oxygen sensor has been installed, the oxygen concentration is shown.

Sensor data values are measured by dedicated sensors.

Cell temperature is only shown if an Ametek ACT or DCT sample cell pressure transducer is installed and enabled.

Flow rate is only present if an Omron MEM sample gas flow sensor is installed and enabled.

Oxygen concentration is only available if a dry-application O2 sensor (i.e. Hummingbird Paracube-Alpha/Pm1158, Figaro KE-25, or Hummingbird Paracube-Delta) has been installed and enabled.

Oxygen sensor temperature is only available if a Hummingbird Paracube-Alpha/Pm1158 O2 sensor has been installed and enabled.

Temperature,

Data

Pressure and Flow

Sample System Data	Sample System temperatures are only displayed if an optional Sample System has been installed. The temperature zone names, current temperature, and temperature unit of measure are displayed.
	The oven heater plate temperature is only displayed if an oven heater RTD is installed (register #248.b9).

SEN993x Measurement Panel

EN Analysis Data			1	
	Species	Concentration	T&H Concentration	Unit
TC A	CO	28632.131	28632.131	%
TC B	CO2	337.803	337.803	%
IR A	C5	0.120	0.120	%
IR B	iC5	1.829	1.829	%
SEC sensor A	C3	314.000	314.000	%
SEC sensor B	C4	1018.382	1018.382	%
Generic sensor A	C1	1.929	1.929	%
Generic sensor A	C2	1.661	1.661	%
Serial sensor 1	SO2	-8971.426	-8971.426	ppm
Serial sensor 2	NOx	0	0	ppm
Serial sensor 3	H2S	45653.305	45653.305	%
Serial sensor 4	CO2	0	0	%
emperature, Pressure, Fl	ow, and Duty Cyc Reading	le Data Unit	T	
Sample Gas Flow rate	Reading	Unit		
Sample Gas Flow rate Sample Gas Pressure	Reading 735954.62	Unit I / min		
Sample Gas Flow rate Sample Gas Pressure Temperature	Reading 735954.62 50.0	Unit I/min kPa		
Sample Gas Flow rate Sample Gas Pressure Temperature Heater Temperature	Reading 735954.62 50.0 111.18	Unit I/min kPa °C	-	
Sample Gas Flow rate Sample Gas Pressure	Reading 735954.62 50.0 111.18 112.9	Unit I/min kPa °C °C		
Sample Gas Flow rate Sample Gas Pressure Temperature Heater Temperature Heater Duty Cycle	Reading 735954.62 50.0 111.18 112.9 0	Unit I/min KPa *C *C %		
Sample Gas Pressure Temperature Heater Temperature	Reading 735954.62 50.0 111.18 112.9 0	Unit I/min kPa °C °C		
Sample Gas Flow rate Sample Gas Pressure Temperature Heater Temperature Heater Duty Cycle	Reading 735954.62 50.0 111.18 112.9 0	Unit I/min KPa *C *C %		

In 99xx analyzers that include a SEN system, there is a SEN tab in the Measurement panel showing measurements taken by the SEN board.

SEN Analysis Data	This table show live and track and hold concentration values for every sensor attached to the SEN system.
	It is not possible to tell the SEN system whether to track or hold concentration values, or to specify the hold times.
Temperature, Pressure, and Flow Data	Sample gas flow and pressure are available if an Ametek PMT Model DCT or an Omron D6F flow sensor has been installed (register 3165, bits 0 [pressure] and 1 [flow]).
	Sample cell, oven air, or block pressure is available if register 3165, bit 2 is set.
	The heater temperature and duty cycle are available if a heater RTD has been installed (register 3165, bit 3).
Sample System Temperatures	If an optional Sample System is attached to the SEN system, three temperature zone readings are displayed.

UV99xx Sensors

The UV99xx can optionally be equipped with dedicated sensors to measure cell temperature and pressure, oxygen concentration, and flow rate:

	Bench	Cell	Bench Board	Oxygen
Control setpoint (°C)	45.0	40.0		
Kp (°C)	10.0	10.0		
Ti (sec)	360.0	1000.0		
Duty cycle (%)	100	100		
Present reading (°C)	16.8	13.9	18.1	0

Transducer ranges

	Cell Pressure mmHg	Flow Rate I / min	02 %
Low scale	5.30	0	0
High scale	5171.50	10.00	25.00
Present reading	91.09	0.19	-0.00

Cell Pressure Alarm Trigger

	mmHg
Low pressure	0
High pressure	0

Set both Low and High pressure to 0 to disable Cell Pressure Alarms

Configured Sensors

O2 = Paracube-Alpha

Oxygen temperature

Cell pressure

Flow rate

	Figure	26 -	The	UV	Bench	Sensors	panel
--	--------	------	-----	----	-------	---------	-------

Heaters

Temperature Control

	Bench	Cell	Bench Board	Oxygen
Control setpoint (°C)	45.0	40.0		
Kp (°C)	10.0	10.0		
Ti (sec)	360.0	1000.0		
Duty cycle (%)	100	100		
Present reading (°C)	16.8	14.0	18.1	0

Figure 27 – Temperature control coefficients

The bench and (optionally) cell are equipped with heating elements to allow their temperatures to be controlled (the set point must be above both ambient temperature and the process gas dew point).

The bench board may be similarly equipped. The Bench Board temperature provides a general indication of the analyzer electronics cabinet temperature. If the bench board temperature is not available, the reading is displayed as zero.

Configuring the Analyzer | 2-14

If the optional PM1158 Oxygen sensor has been installed, its temperature reading is displayed in the Oxygen column (otherwise, the reading will be greyed out or not displayed).

The heater control algorithm is PI (proportional + integral).

Transducer Ranges

Transducer ranges	
-------------------	--

	Cell Pressure mmHg	Flow Rate I / min	Oxygen %
Low scale	5.30	0	0
High scale	5171.50	10.00	25.00
Present reading	91.09	0.20	-0.00

The cell pressure transducer (optional), flow rate sensor (optional), and oxygen sensor (optional) can each be assigned a scale range.

If a sensor is not installed, the corresponding High scale value should be set to zero (this tells the analyzer that the sensor has not been configured).

SEN993x Sensors – Thermal Conductivity

								2 Refresh
Thermal	Conductivity Pellist	or Setup						Installed Sensors
	Species Name	Concentration	Complementary	Ĩ.				TC-A
	opecies Name	Unit	Result?					• TC-B
TC - A	СО	%						10-0
TC - B	C02	%						
Coefficient	ls Signal	Signal	Linearization	Linearization	Zero Corr	Zero Corr	Zero Corr	T
	Gain	Offset (mV)	S-H2	Q-H2	alpha	beta	gamma	
CO	50	0.0	0.00534314	0	0.002170	0.03486896	0.21618135	
CO2	50	0.0	0.00534314	0	0.002170	0.03486896	0.21618135	-
Non-meas	sured Interference Gas		One 4 M	Interference	0.00 0.0%	0.00 0.00	í.	
Non-meas	sured Interference Gas Interference Gas 1 Name	Concentrations Gas 1 % Concentration in Zero Gas	Gas 1 % Concentration in Process Gas	Interference Gas 2 Name	Gas 2 % Concentration in Zero Gas	Gas 2 % Concentration in Process Gas		
Non-meas	Interference Gas 1	Gas 1 % Concentration	Concentration	Gas 2	Concentration	Concentration		
	Interference Gas 1 Name	Gas 1 % Concentration in Zero Gas	Concentration in Process Gas	Gas 2 Name	Concentration in Zero Gas	Concentration in Process Gas		
CO	Interference Gas 1 Name Sue Sue	Gas 1 % Concentration in Zero Gas 12.0000	Concentration in Process Gas 13.0000	Gas 2 Name Joe	Concentration in Zero Gas 15.0000	Concentration in Process Gas 16.0000		
C0 C02	Interference Gas 1 Name Sue Sue	Gas 1 % Concentration in Zero Gas 12.0000	Concentration in Process Gas 13.0000	Gas 2 Name Joe	Concentration in Zero Gas 15.0000	Concentration in Process Gas 16.0000	UV Species Compensation Factor	
C0 C02	Interference Gas 1 Name Sue Sue e Setup Interference	Gas 1 % Concentration in Zero Gas 12.0000 22.0000 Species 1 Compensation	Concentration in Process Gas 13.0000 23.0000	Gas 2 Name Joe Jane Species 2 Compensation	Concentration in Zero Gas 15.0000 25.0000 UV Interference	Concentration in Process Gas 16.0000 26.0000 UV Default	Compensation	
CO CO2	Interference Gas 1 Name Sue Sue Sue Sue Sue Interference Species 1	Gas 1 % Concentration in Zero Gas 12.0000 22.0000 Species 1 Compensation Factor	Concentration in Process Gas 13.0000 23.0000 Interference Species 2	Gas 2 Name Joe Jane Species 2 Compensation Factor	Concentration in Zero Gas 15.0000 25.0000 UV Interference Species	Concentration in Process Gas 16.0000 26.0000 UV Default Concentration	Compensation Factor	
CO CO2 Interference CO CO2	Interference Gas 1 Name Sue Sue Exectly Interference Species 1 CO2 Gen-1 Gen-1	Gas 1 % Concentration in Zero Gas 12.0000 22.0000 Species 1 Compensation Factor 120.00000	Concentration in Process Gas 13.0000 23.0000 Interference Species 2 SECj-2	Gas 2 Name Joe Jane Species 2 Compensation Factor 14.00000	Concentration in Zero Gas 15.0000 25.0000 UV Interference Species NDr \rightarrow	Concentration in Process Gas 16.0000 26.0000 UV Default Concentration 0	Compensation Factor 17.00000	
CO CO2	Interference Gas 1 Name Sue Sue Exectly Interference Species 1 CO2 Gen-1 Gen-1	Gas 1 % Concentration in Zero Gas 12.0000 22.0000 Species 1 Compensation Factor 120.00000	Concentration in Process Gas 13.0000 23.0000 Interference Species 2 SECj-2	Gas 2 Name Joe Jane Species 2 Compensation Factor 14.00000	Concentration in Zero Gas 15.0000 25.0000 UV Interference Species NDr \rightarrow	Concentration in Process Gas 16.0000 26.0000 UV Default Concentration 0	Compensation Factor 17.00000	
CO CO2 Interference CO CO2	Interference Gas 1 Name Sue Sue e Setup Interference Species 1 CO2 Gen-1 Is	Gas 1 % Concentration in Zero Gas 12.0000 22.0000 Species 1 Compensation Factor 120.00000 22.00000	Concentration in Process Gas 13.0000 23.0000 Interference Species 2 SECj-2	Gas 2 Name Joe Jane Species 2 Compensation Factor 14.00000	Concentration in Zero Gas 15.0000 25.0000 UV Interference Species NDr \rightarrow	Concentration in Process Gas 16.0000 26.0000 UV Default Concentration 0	Compensation Factor 17.00000	

Figure 28 – SEN 993x Thermal Conductivity Sensor Setup

The Thermal Conductivity Pellistor can be used to measure a variety of gases such as hydrogen, methane and other combustible gases.

Thermal Conductivity Pellistor Setup	The species name can be up to 6 characters, as can the concentration unit of measure (typically %).
	The complementary result checkbox converts the calculated concentration to 100% - the concentration.
Coefficients	These factory-set parameters perform static corrections for the Thermal Conductivity Detector (TCD):

Coeffi	cients
cocin	cicica

	Signal Gain	Signal Offset (mV)	Linearization S-H2	Linearization Q-H2	Zero Corr alpha	Zero Corr beta	Zero Corr gamma
H2	1	0	1.01	1.02	1.1	1.2	1.3

Signal Gain for the SGX Sensortech VQ6000 thermal conductivity sensor signals is set using jumpers. Since these jumpers are not read by the board firmware, the gain factor needs to be entered here as Signal Gain. Allowable values are 1, 2, 4, or 8.

Signal Offset is a DC voltage offset in the range of 0 .. 2500 mV. It allows the DAC to measure negative voltages. During zero calibration, the analyzer will adjust a zero-offset DAC for the sensor to the level you specify here, before performing averaging.

Linearization S-H2 is a linear factor used to scale the mV reading from the TCD.

Linearization Q-H2 is a nonlinear factor used to scale the mV reading from the TCD.

Zero-Corr Alpha is used to correct the gas concentration reading for the effect of pressure changes.

Zero-Corr Beta is used to correct the gas concentration reading for interference from Interference Gas 1.

Zero-Corr Gamma is used to correct the gas concentration reading for interference from Interference Gas 2.

Zero Correction

Gases other than the target species can affect the TCD readings. This section lets you specify the concentration of up to two non-measured gases in both the zero gas and the process stream, that affect zero correction.

They are used in conjunction with the zero correction alpha, beta, and gamma coefficients in the table above this one.

ZeroCorrection = alpha
$$\binom{P_p}{P_z}$$
 + beta $\binom{Gas1_p}{Gas1_z}$ + gamma $\binom{Gas2_p}{Gas2_z}$

where:

 P_b = absolute pressure of the process gas

 P_z = absolute pressure of the zero gas

 $Gas1_p$ = interference gas-1 concentration in process-gas

 $Gas1_z$ = interference gas-1 concentration in zero-gas

 $Gas2_p$ = interference gas-2 concentration in process-gas

 $Gas2_z$ = interference gas-2 concentration in zero-gas

So, ignoring the effect of measured interference gases (next section), the concentration is corrected for zero correction:

 $CONC_{comp} = (CONC_{lin} * SpanFactor) - ZeroCorrection$

Interference Setup

You can also correct for the interference effects of species that are measured by the analyzer. You can compensate for the effect of two gases that are measured by sensors on the SEN board, and for one gas that is measured by the UV Bench (if installed). The interference calculation simply subtracts the concentration of the interfering species (without performing any unit of measure conversions) multiplied by the appropriate compensation factor.

 $CONC_{comp} = CONC_{lin} \cdot SpanFactor - ZeroCorrection$

- + UVConc[UVSpecies] · UVCompensationFactor
- + SenConc[SenSpecies1] · SenCompensationFactor1
- + SenConc[SenSpecies2] · SenCompensationFactor2

where:

UVConc[UVSpecies] is the concentration value of an interfering UV species, which is to be obtained from the UV Bench in Integrated Mode, or a static value in Standalone Mode; and

SenConc[SenSpecies1], SenConc[SenSpecies2], SenCompensationFactor1 and SenCompensationFactor2 are the

concentration values and the compensation factors of interfering sensor species. The concentration values are measured by the SEN board (there is no provision for default values, and the pop-up menus prevent you from creating circular references).

SEN993x Sensors – Infrared Spectroscopy

Infrared G	as Sensor							Installed Sensors
	Species Name	Concentration Unit	Adaptive Sigma	Adaptive Max T90 (secs)				 IR-A IR-B
IR - A	H2	%	0.0050	15				
IR - B	H1	%	0.0050	15				
Linearizatio	on Coefficients							
	Signal Gain	Signal Offset (mV)	Linearization LC-1	Linearization LC-2	Linearization LC-3			
H2	2	0.0	0.003450	0.011500	0			
H1	2	414.5	0.003450	0.011500	0			
Non-measu	ured Interference Spe	1		Interference				
	Interference Gas-1 % in Process Gas	Interference Gas-1 Comp. Factor	Interference Gas-2 % in Process Gas	Interference Gas-2 Comp. Factor				
H2	Interference Gas-1 % in Process Gas	Interference Gas-1 Comp. Factor 0	Interference Gas-2 % in Process Gas 0	Gas-2 Comp. Factor 0				
	Interference Gas-1 % in Process Gas	Interference Gas-1 Comp. Factor	Interference Gas-2 % in Process Gas	Gas-2 Comp. Factor				
H2 H1	Interference Gas-1 % in Process Gas 0 0	Interference Gas-1 Comp. Factor 0	Interference Gas-2 % in Process Gas 0	Gas-2 Comp. Factor 0				
H2	Interference Gas-1 % in Process Gas 0 0	Interference Gas-1 Comp. Factor 0	Interference Gas-2 % in Process Gas 0	Gas-2 Comp. Factor 0	UV Interference Species	UV Species Default ppm	UV Species Compensation Factor	
H2 H1	Interference Gas-1 % in Process Gas 0 0 e Setup Interference	Interference Gas-1 Comp. Factor 0 0 Species 1 Compensation	Interference Gas-2 % in Process Gas 0 0	Gas-2 Comp. Factor 0 0 Species 2 Compensation	Interference	Default	Compensation	
H2 H1 Interference	Interference Gas-1 % in Process Gas 0 0 e Setup Interference Species 1	Interference Gas-1 Comp. Factor 0 0 Species 1 Compensation Factor	Interference Gas-2 % in Process Gas 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gas-2 Comp. Factor 0 0 Species 2 Compensation Factor	Interference Species	Default ppm	Compensation Factor	
H2 H1 Interference H2 H1	Interference Gas-1 % in Process Gas 0 0 e Setup Interference Species 1 CO ▽ (none) ▽	Interference Gas-1 Comp. Factor 0 0 Species 1 Compensation Factor 0	Interference Gas-2 % in Process Gas 0 0 0 Interference Species 2 CO2 \rightarrow	Gas-2 Comp. Factor 0 0 Species 2 Compensation Factor 0	Interference Species (none)	Default ppm 0	Compensation Factor	
H2 H1 Interference	Interference Gas-1 % in Process Gas 0 0 e Setup Interference Species 1 CO (none) nals	Interference Gas-1 Comp. Factor 0 Species 1 Compensation Factor 0 0	Interference Gas-2 % in Process Gas 0 0 Interference Species 2 CO2 \scalar (none) \scalar	Gas-2 Comp. Factor 0 0 Species 2 Compensation Factor 0	Interference Species (none)	Default ppm 0	Compensation Factor	
H2 H1 Interference H2 H1	Interference Gas-1 % in Process Gas 0 0 e Setup Interference Species 1 CO (none) nals	Interference Gas-1 Comp. Factor 0 0 Species 1 Compensation Factor 0	Interference Gas-2 % in Process Gas 0 0 0 Interference Species 2 CO2 \rightarrow	Gas-2 Comp. Factor 0 0 Species 2 Compensation Factor 0	Interference Species (none)	Default ppm 0	Compensation Factor	

Figure 29 – SEN 993x Infrared Absorption Spectrography Setup

The Process Sensor Controller board is designed to interface with two SGX IR600 series infrared sensors, usually measuring CO2 or hydrocarbon concentrations in % using infrared absorption spectroscopy.

Infrared Gas Sensor setup	The species name can be up to 6 characters, as can the concentration unit of measure (typically %).
	The signal conditioning circuit for each sensor produces two analog signals: reference and differential. These signals are passed through an FIR low pass filter and an adaptive FIR smoothing filter.
	You can provide a Max T90 time value, which is used to determine a low pass filter attenuation rate (see the description of this filter on page 2-31).
	You can also provide an Adaptive Sigma, or noise floor value (see the description of Adaptive Sigma on page 2-31).
Signal Processing	In absorption spectroscopy, gas concentration is a non-linear function of the difference between the reference and active (measure) signals. The analyzer filters noise from the signals, linearizes the absorption

signal, and compensates for the effect of other gases that may also absorb infrared energy.

The analog signal gain is set using jumpers. Since these jumpers are not read by the board firmware, the gain factor needs to be entered here as Signal Gain. Allowable values are 1, 2, 4, or 8.

The signal offset is a DC voltage offset in the range of 0 .. 2500 mV, which allows the DAC to measure negative voltages. During zero calibration, the analyzer will adjust a zero-offset DAC for the sensor to the level you specify here, before performing averaging.

The digitized signals are passed through a low pass FIR filter, as described on page 2-31, and a smoothing FIR filter as described on page 2-31.

The absorption signal Δ is linearized using a second or third order polynomial:

Abs = $LC1\varDelta + LC2\varDelta^2 + LC3\varDelta^3$

A separate spreadsheet can be used to calculate the linearization coefficients, or you can optionally do this using the linearization utility described on page 2-33.

This is normally done at the Ametek factory and requires calibration gases with several known concentrations.

Transmittance $T_p = \left(\frac{Measure\ signal}{Reference\ signal}\right)$ Absorbance $\Delta = -log\left(\frac{T_p}{T_z}\right)$

where:

 T_p is the transmittance with process gas

 T_z is the transmittance with zero gas

Non Measured Species in Process Gas

Analog signal processing

Low pass filter

Linearization

Absorption spectroscopy can be affected by the presence of gases other than the species of interest, that absorb light in a particular wavelength band. This table allows you to compensate for the effect of gas species that are not measured but are known to be present in the gas being measured.

The concentration of up to two non-measured gases in the process stream can be specified (but unlike the TCD sensor, concentrations in the zero gas are not considered). For each of these gases, a linear compensation factor can be entered. This compensation factor is automatically applied by the analyzer firmware.

The names of any interfering gas species are not recorded, and no unit of measure conversions are performed.

Interference Setup	This table allows you to compensate for the effect of gas species that are measured by the 99xx UV Bench or by other 993x SEN sensors.
	In the event that a UV Bench is not available, the UV gas species are named as UV Species 1, etc. This allows the sensor to be set up for an environment that will eventually include a 99xx UV Optical Bench.
Sensor Signals	The raw reference and difference signals are displayed, along with the calculated concentrations.

SEN993x Sensors – SEC

								2 Refresh
							Ļ	
SEC Transi	nitter Setup							Installed Sensors
	Species Name	Concentration Unit	Adaptive Sigma	Adaptive Max T90 (secs)				 SEC-A SEC-B
SEC - A	H2S-1	%	0.10000	15				
SEC - B	H2S-2	%	0.10000	15				
SEC Linera	zation Coefficients							
	Linearization LC-1	Linearization LC-2	Linearization LC-3					
H2S-1	0.003450	0.011500	0	1				
H2S-2	21.000000	22.000000	23.0000					
SEC Interier	ence Process Gass	es Interference	Interference	Interference	Ĩ			
SEC Interier			Interference Process Gas-2 Concentration	Interference Process Gas-2 Compensation				
H2S-1	Interference Process Gas-1	Interference Process Gas-1	Process Gas-2	Process Gas-2				
	Interference Process Gas-1 Concentration	Interference Process Gas-1 Compensation	Process Gas-2 Concentration	Process Gas-2 Compensation				
H2S-1 H2S-2	Interference Process Gas-1 Concentration 0.1	Interference Process Gas-1 Compensation 0.995	Process Gas-2 Concentration 0.2	Process Gas-2 Compensation 0.96				
H2S-1 H2S-2	Interference Process Gas-1 Concentration 0.1 1.10	Interference Process Gas-1 Compensation 0.995	Process Gas-2 Concentration 0.2	Process Gas-2 Compensation 0.96	UV Interference Species	UV Default Concentration	UV Species Compensation Factor	
H2S-1 H2S-2	Interference Process Gas-1 Concentration 0.1 1.10 rence Setup Interference	Interference Process Gas-1 Compensation 0.995 0.996 Species 1 Compensation	Process Gas-2 Concentration 0.2 2.2	Process Gas-2 Compensation 0.96 0.98 Species 2 Compensation	Interference	Default	Compensation	
H2S-1 H2S-2 SEC Interfe	Interference Process Gas-1 Concentration 0.1 1.10 rence Setup Interference Species 1	Interference Process Gas-1 Compensation 0.995 0.996 Species 1 Compensation Factor	Process Gas-2 Concentration 0.2 2.2 Interference Species 2	Process Gas-2 Compensation 0.96 0.98 Species 2 Compensation Factor	Interference Species	Default Concentration	Compensation Factor	
H2S-1 H2S-2 SEC Interfe H2S-1	Interference Process Gas-1 Concentration 0.1 1.10 rence Setup Interference Species 1 CO CO CO2	Interference Process Gas-1 Compensation 0.995 0.996 Species 1 Compensation Factor 0.995	Process Gas-2 Concentration 0.2 2.2 Interference Species 2 (none)	Process Gas-2 Compensation 0.96 0.98 Species 2 Compensation Factor 1	Interference Species NDr	Default Concentration 2.5	Compensation Factor 0.982	
H2S-1 H2S-2 SEC Interfe H2S-1 H2S-2	Interference Process Gas-1 Concentration 0.1 1.10 rence Setup Interference Species 1 CO CO CO2	Interference Process Gas-1 Compensation 0.995 0.996 Species 1 Compensation Factor 0.995	Process Gas-2 Concentration 0.2 2.2 Interference Species 2 (none)	Process Gas-2 Compensation 0.96 0.98 Species 2 Compensation Factor 1	Interference Species NDr	Default Concentration 2.5	Compensation Factor 0.982	
H2S-1 H2S-2 SEC Interfe H2S-1 H2S-2	Interference Process Gas-1 Concentration 0.1 1.10 rence Setup Interference Species 1 CO CO2 ignals	Interference Process Gas-1 Compensation 0.995 0.996 Species 1 Compensation Factor 0.995 0.987	Process Gas-2 Concentration 0.2 2.2 Interference Species 2 (none)	Process Gas-2 Compensation 0.96 0.98 Species 2 Compensation Factor 1	Interference Species NDr	Default Concentration 2.5	Compensation Factor 0.982	

Figure 30 – SEN 993x SEC Sensor Setup

The SEN 993x SEC board is designed to interface with two SE Sensor Electronics SEC 3000 sensors, attached via a 0..20 mA connection, often measuring H2S concentrations in %.

SEC Transmitter Setup	The species names and concentration units of measure can be 6 characters each. The linearization coefficients and interference compensation factors will not be changed if you change the units of measure.
	The raw signals from the sensor are passed through an FIR low pass filter and an adaptive FIR smoothing filter (page 2-31).
	You can provide a Max T90 time value, which is used to determine the low pass filter attenuation rate (see the description of this filter on page 2-31).
	You can also provide an Adaptive Sigma, or noise floor value (see the description of Adaptive Sigma on page 2-31).
SEC Linearization	The filtered signal (x) is linearized using a second or third order polynomial: $Y = LC1 x + LC2 x^{2} + LC3 x^{3}$

	The polynomial coefficients are normally set up at the Ametek factory. In order to create or validate them, it's necessary to collect measurements for several known concentrations of calibration gas, and to perform a curve fit on the measured data points (you can optionally do this using the linearization utility described on page 2-33).
SEC Interference	The SEC concentration calculation can compensate for the effect of up to two species that are measured by the 993x SEN board, and one that is measured by the UV Bench. You can also compensate for another two gases that are not measured. For more details on the interference calculation, please see the common calculation section on page 2-32.
SEC Raw signals	The raw sensor value (in mV) and the calculated gas concentration are shown in real time.

SEN99xx Sensors – Generic

с · т						
Generic Tran	nsmitter Setup					 lled Sensors
	Species Name	Concentration Unit				Seneric-A Seneric-B
Generic - A	Methane	%				
Generic - B	Ethane	%				
Generic Scale						
	Low Scale	High Scale	Signal Range			
Methane	0	100	05 V	∇		
Ethane	0	100	010 V	$\overline{\nabla}$		
	0	·		\sim		
				V		
Generic Raw S	tionals			V		
Generic Raw S	Signals Raw (mV)	Concentration	Ī			
Generic Raw S		Concentration				
	Raw (mV)					
Methane	Raw (mV) 45.1	1.807				
Methane	Raw (mV) 45.1	1.807				
Methane	Raw (mV) 45.1	1.807				•
Methane	Raw (mV) 45.1	1.807				•
Methane	Raw (mV) 45.1	1.807				•
Methane	Raw (mV) 45.1	1.807				•
Methane	Raw (mV) 45.1	1.807				•
Methane	Raw (mV) 45.1	1.807				•

Figure 31 – SEN Generic Sensor Setup

All SEN99xx models are designed to interface with up to two generic sensors that emit voltage signals that are proportional to gas concentrations.

For each of them, a simple linear scaling is performed. You can see the raw and scaled signals in real time.

SEN99xx Serial Sensors – Nenvitech Net3 Cyber

									न 🔄
Serial Trans	mitter Setup					Seri	ial Sensor co	onnection	n Installed
	Species Name	Concentration Unit	Serial Node	Transmi Type		Ba	ud rate	9600	 Seria Seria
Serial-1	CH4	%	1	Nenvitech NET3		Da	ata bits	8	 Seria
Serial-2	Ethane	%	2	smartGAS EVO		_	Parity	none	 Seria
Serial-3	C3H8	%	3	Nenvitech NET3	Cyber 🔽	St	top bits	1 bit	RS-4
Serial-4	H2S	%	4	smartGAS EVO	∇				10-4
Nenvitech Nor	n-measured Species I Interference Gas-1 % in Process Gas	nterference Interference Gas-1 Comp. Factor 0.995	Interference Gas-2 % in Process Gas 0.8	Interference Gas-2 Comp. Factor 0.987]				
CH4 Ethane	Interference Gas-1 % in Process Gas	Interference Gas-1 Comp. Factor 0.995	Gas-2 % in Process Gas 0.8	Gas-2 Comp. Factor 0.987					
CH4	Interference Gas-1 % in Process Gas	Interference Gas-1 Comp. Factor	Gas-2 % in Process Gas	Gas-2 Comp. Factor					
CH4 Ethane C3H8 H2S	Interference Gas-1 % in Process Gas 1.2 3.0 asured Species Interfe	Interference Gas-1 Comp. Factor 0.995 0.975	Gas-2 % in Process Gas 0.8	Gas-2 Comp. Factor 0.987 0.896					
CH4 Ethane C3H8 H2S Nenvitech Mea	Interference Gas-1% in Process Gas 1.2 3.0	Interference Gas-1 Comp. Factor 0.995 0.975	Gas-2 % in Process Gas 0.8	Gas-2 Comp. Factor 0.987 0.896 0.896 Species 2 Compensation Factor	UV Interference Species	UV Default Concentration	UV Specie Compensat Factor		
CH4 Ethane C3H8 H2S	Interference Gas-1 % in Process Gas 1.2 3.0 asured Species Interference	Interference Gas-1 Comp. Factor 0.995 0.975	Gas-2 % in Process Gas 0.8 2.2 Interference	Gas-2 Comp. Factor 0.987 0.896 	Interference	Default	Compensat		
CH4 Ethane C3H8 H2S Nenvitech Mea CH4 Ethane	Interference Gas-1 % in Process Gas 1.2 3.0 asured Species Interfe Interference Species 1	Interference Gas-1 Comp. Factor 0.995 0.975 0.975 compensition Factor 0.998	Gas-2 % in Process Gas 0.8 2.2 Interference Species 2	Gas-2 Comp. Factor 0.897 0.896 0.896 Compensation Factor 0.997	Interference Species	Default Concentration 0.5	Compensat Factor 0.987		
CH4 Ethane C3H8 H2S Nenvitech Mea	Interference Gas-1 % in Process Gas 1.2 3.0 asured Species Interfe Interference Species 1	Interference Gas-1 Comp. Factor 0.995 0.975 0.975 compensation Factor	Gas-2 % in Process Gas 0.8 2.2 Interference Species 2	Gas-2 Comp. Factor 0.987 0.896 0.896 Species 2 Compensation Factor	Interference Species	Default Concentration	Compensat Factor		

Figure 32 - SEN99xx Serial Nenvitech Net3 Cyber Sensor

SEN Installed Hardware

- Gas sample pressure sensor
- Gas flow sensor Air / Block / Plate RTD
- Oven Heater RTD
-
- Generic sensor transmitter A Generic sensor transmitter B
- -----
- Serial sensor is RS485
- Serial sensor 1
- Serial sensor 2
- Serial sensor 3
- Serial sensor 4

Interference Setup

You can connect up to four Nenvitech Net 3 Cyber sensors (or a mix of serial sensors) via an RS-485 serial connection. To do this, the serial port must be configured in RS-485 mode (rather than RS-232 mode) in Factory Settings. You can enable up to four serial ports in RS-485 mode, each with its own Modbus nodeID and transmitter type.

You can assign a six character species name and unit of measure to each serial port. You can select a transmitter type from the pop-up menus in *Serial Transmitter Setup*. Note that the available ports and transmitters will change if you set the serial port to RS-232 mode.

You can compensate for the effect of other gases in the process stream as described on page 2-32.

2-25 | Configuration Software for Ametek 9900 Series Analyzers

SEN99xx Serial Sensors – SmartGas EVO

Species Name Cr Serial-1 CH4 Serial-2 Ethane Serial-3 C3H8 Serial-4 H2S	Serial Node Serial Node % 1 % 2 % 3 % 4	Transmitter Type Nenvitech NET3 Cyber smartGAS EVO	Baud rate Data bits Parity	9600 8 none
Serial-2 Ethane Serial-3 C3H8	% 2 % 3	smartGAS EVO 🗸		
Serial-3 C3H8	% 3		Parity	none
		New itesh NET2 Outers		
Serial-4 H2S	96 /	Nenvitech NET3 Cyber 🗸	Stop bits	1 bit
	70 4	smartGAS EVO 🗸		
CH4				
Ethane Methan T.0	01 1.02	1.03 1.04		
СЗН8				
H2S H2 V 1.1	1 1.2	1.3 1.4		

Figure 33 – SEN Serial SmartGas EVO Sensor

\square	Gas	sampl	le	pressure	sensor

✓ Gas now sensor	
Air / Block / Plate RTD	

Oven Heater RTD

Generic sensor transmitter A

- Generic sensor transmitter B
- Serial sensor is RS485

Serial sensor 1

Serial sensor 2

```
Serial sensor 3
```

Serial sensor 4

SmartGas EVO Setup

You can connect up to four SmartGas EVO sensors (or a mix of serial Modbus sensors) via an RS-485 serial connection. To do this, the serial port must be configured in RS-485 mode (rather than RS-232 mode) in Factory Settings. You can enable up to four serial ports in RS-485 mode, each with its own Modbus nodeID and transmitter type.

For each serial port, you can assign a six character species name and unit of measure. You can select a transmitter type from the pop-up menus in *Serial Transmitter Setup*. Note that the available ports and transmitters will change if you configure the serial port to RS-232 mode.

You can compensate for the effect one other gas in the process stream, using a third order correction polynomial. Four crosstalk coefficients are provided, where XCoef1 is the 0th order coefficient and XCoef4 is the 3rd order coefficient. These are normally set up at the Ametek factory, but you can also calculate them using the linearization utility described on page 2-33.

SEN99xx Serial Sensors – Axetris LGD

If the SEN serial port is set to RS-232 mode, an Axetrix Laser Gas Detection sensor can be attached. However this is a future capability of the SEN system, and its configuration parameters have not yet been determined.

SEN99xx Sensors - Gas Flow

UV Bench	Thermal Conductivity Infrared	SEC	Generic	Serial	Gas Flow	Sensor Temperature	
							Refresh
Ga	s Flow Sensor Setup						Installed Sensors
	Flow rate low scale (I / mi	n) 0					Gas Flow Rate
	Flow rate high scale (I / mi	n) 5					🧿 Gas Sample Pressure
	Flow rate linearization coefficient	0 0					
	Flow rate linearization coefficient	F 1 0.1	00000				
	Flow rate linearization coefficient	-2 1.1	00000				
	Pressure low scale (kP	a) 50	.0				
	Pressure high scale (kP	a) 15	0.0				
	Pressure alarm lower trigger (kP	a) 51	.0				
	Pressure alarm upper trigger (kP	a) 14	9.0				
	Gas sample flow rate (I / mi	n)	737755.25				
	Gas sample pressure (kP	a)	6.7				

Sample Gas Flow

Sample gas flow can be measured using an optional Omron D6F Flow Sensor. The output of the D6F flow sensor is slightly non-linear with zero bias and is dependent on the dominant background gas. The general equation for linearizing the filtered ADC data to flow rate is:

Flow Rate = $(F_2 \cdot Sig^2) + (F_1 \cdot Sig) + F_0$

where:

 F_2 , F_1 , and F_0 are linearization coefficients. $Sig = Filtered \ Data - ADC \ Data \ Zero \ Bias$ $ADC \ Data \ Zero \ Bias = \frac{(2^{12}-1)}{5} = \frac{4095}{5} = 819$

If the flow rate is primarily used as an indication of flow, and slight non-linearity is acceptable, the linearization coefficients can be calculated automatically if F_2 is set to 0:

 $F_1 =$ Flow low scale

 $F_1 = \frac{Flow high scale - Flow low scale}{ADC Data Range ZB} = (Flow high scale - Flow low scale) / ADC Data Range ZB$

where:

DC Data Range ZB = ADC Data Range -ADC Data Zero Bias = 3276

Sample Pressure

The output of the Ametek DCT pressure transducer is linear without zero bias, so the sample gas pressure value is linear within the scale range specified in this table. The pressure scale values are greyed out if no pressure transducer has been installed.

SEN99xx Sensor Temperature

			a · · ·		Sensor Temperature	
UV Bench	Thermal Conductivity Infrared SEC	Generic	Serial	Gas Flow	Sensor remperature	
	Temperature Control					Refresh
	Temperature Zone Name	Oven				
	Setpoint (deg C)	42				Air / Block / Plate temperature
	Kp (deg C)	7.00				📀 Oven Heater temperature
	Ti (sec)	60.0				
	Nominal Value (deg C)	21	_			
	Air / Block / Plate temperature (deg C)	110.66	_			
	Oven Heater temperature (deg C)	112.5				
	Heater duty cycle (%)	0				

If optional RTDs are installed for temperature control, the SEN system can control the temperature of an oven or heating plate.

Temperature Control

In integrated configurations (UV Bench plus SEN system), the oven heater is normally controlled by the UV Bench board. This panel only appears when connected to SEN-only analyzer, or a UV + SEN configuration that include a temperature RTD that controls a nonoven temperature.

The temperature is controlled using a PI (proportional - integral) algorithm. The air / block / plate temperature is measured using an RTD.

Optionally, a heater RTD can be installed, in which case the SEN board will limit the temperature and duty cycle of the heater.

The temperature is sampled every 200 ms, and the difference between the measured temperature and the setpoint, T_{err} is accumulated over the time period T_i to yield T_{err} .

Heater Duty Cycle % = 100
$$\cdot \frac{(T_{err} + \sum T_{err} \cdot 20)}{T_i} / K_p$$

where:

 K_p is the proportional control constant

 T_i is the integral reset time

20 is the control interval, in seconds

The nominal temperature will be used if an air / block / plate temperature RTD has not been installed, or if it has failed.

SEN993x Common Calculations

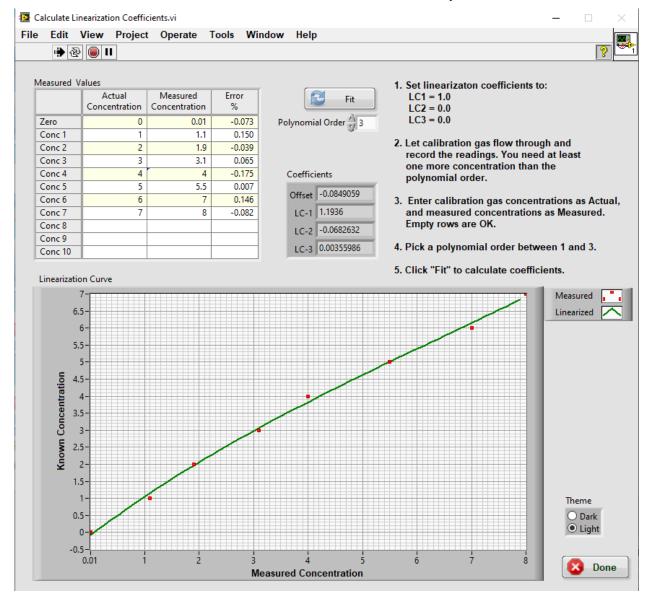
Several calculations are performed in the same way for several of the SEN sensors:

FIR Low pass filter	The analog sensor signals are digitized and passed through a low pass FIR filter:
	$Y_i = X_i + Y_{i-1} - (Y_{i-1} \gg N_{\text{LPF}})$
	where:
	X_i is the current signal from the analog to digital converter
	i refers to the current sampling period (X_i is the current sample, and X_{i-1} is the previous sample).
	Y_i is the filtered signal at time i
	Y_{i-1} was the previous filtered signal value
	N_{LPF} is the number of bits to right-shift Y_{i-1}
	The signal acquisition interval is 200ms, so $N_{LPF} = 4$ yields a T90 value of 7s, and $N_{LPF} = 5$ yields a T90 value of 14s. You can specify a value for MaxT90, but not for N_{LPF} .
	Y_i is scaled down to fit the word length of the analog to digital converter:
	$Z_i = (Y_i \gg N_{\rm LPF})$
Adaptive Filter	Several of the 993x SEN sensors let you specify a value for Adaptive Sigma.
	This value, in combination with T90 _{max} , controls an adaptive FIR filter in which the filter gain is determined dynamically based on the amount of change in the signal:
	let $\Delta = Z_i - Z_{i-1}$ {ie: new value – old value}
	and $G1 = \left(\frac{ \Delta }{100 \sigma}\right)$ where σ is the value of Adaptive Sigma
	The minimum gain is:
	$G_{\min} = \left(\frac{1}{\operatorname{Int}\left(\frac{0.45 \text{ T90}_{\max}}{\operatorname{SampleInterval}}\right) + 1}\right)$
	The filter gain is:
	$Gain = G1 + G_{min}$
	And the filtered value is:
	$Z_{i-1} + (Gain \Delta)$ {ie: old value + Gain * Δ)

2-31 | Configuration Software for Ametek 9900 Series Analyzers

September 2022

Compensation	affected by the presence of other gas species. Several of the SEN 993x sensor readings can be compensated for this effect.
	Up to two gas species measured by the SEN board, and one species measured by the UV Bench can be selected as interfering species. The compensation is assumed to be proportional to the concentration of the interfering gas species.
	Note that no unit of measure conversions are performed when performing this calculation.
	In general,
	$Conc_{corrected} = Conc_{uncorrected} - (Conc_{Sen1} \cdot Corr_{Sen1}) - (Conc_{Sen2} \cdot Corr_{Sen2}) - (Conc_{UV1} \cdot Corr_{UV1})$
	Where: Conc is a concentration, Corr is a correction factor, Sen refers to the SEN board, and UV refers to the UV board.
	For some sensors, you can also specify the concentration of another two gas species that are not measured but are known to be present in the process gas (the Thermal Conductivity sensor panel also lets you specify the concentration of an interfering gas species that is present in the zero gas).
Linearization	Several of the sensor signals can be linearized using a polynomial. In general, the Ametek factory will provide values for the polynomial coefficients.
	The filtered signal (x) is linearized using a second or third order polynomial:
	$Y = LC1 x + LC2 x^2 + LC3 x^3$
	In order to calculate linearization coefficients, it's necessary to have calibration gases at a variety of known concentrations of the species of interest (you need to have, at minimum, one more concentration than the polynomial order).
	You should remove interference species compensation, and set the linearization coefficients to zero, except for the first order coefficient, which should be set to one.
	Collect concentration values for each of the known concentrations, taking care to let the readings stabilize. The most common method for creating polynomial coefficients is to use a least squares fit. Once you've created coefficients, it's good practice to verify the linearization and the calibration by running several known gas


Thermal conductivity and absorption spectroscopy readings can be

Other Species Interference

concentrations through the analyzer, and recording the deviation from the known calibration.

Linearization Utility

You can calculate linearization coefficients by selecting "Linearization Coefficients" from the System menu:

This simple utility lets create a linearization polynomial to compensate for sensor non-linearity.

For the sensor and species of interest, start by setting any existing linearization coefficients to zero, except for the first order coefficient, which should be set to 1.0. You should also remove any entries for interfering species, unless they are also known to be present in the calibration gas.

You'll need to run calibration gas through the analyzer at a number of known concentrations. At minimum, you'll need one more than the order of the polynomial you wish to fit, but you can use as many as you wish.

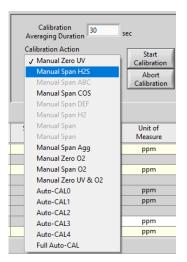
In the first column, enter the known concentrations of the species of interest, and in the second column, enter the readings you get from the analyzer. Blank rows are fine.

2-33 | Configuration Software for Ametek 9900 Series Analyzers

Set the desired polynomial order and click "Fit". A polynomial is generated using the least-squares method of curve approximation and is graphed as a solid plot. Your calibration vs. measured concentrations are shown as discrete data points (the "Measured" plot).

The absolute difference between the measured reading and the fitted polynomial is shown in the Error column of the Measured Values table. Although the example is shown in percentage, you can use either ppm or percentage.

The utility does not automatically transfer the linearization coefficients to the analyzer: you'll have to do that manually using the setup screen for the sensor and species of interest.


For some sensors, there is no provision for an offset (zero-order) coefficient in the analyzer.

UV Bench Calibration

The IW Densh Calibration	manal lata yay aalihu	nto IIV obcombing go	aconcentrations
The UV Bench Calibration	parter lets you carror	ale O v-ausorunig gas	

Calibration in pro	gress											Refresh
Calibration Averaging Duration Calibration Action	31 se	C										
Manual Zero UV		Now Calibrating Abort									Samp	le Source
Time Remaining	20	Calibratio	n									a or other ocess Strea
	Span Concentra		Span Factor	Zero Dr Resul		ero Drift Limit		n Drift s	Span Drift Limit	Curren Readin		Unit of Measure
H2S	25.00		0.9580	0		0		0	0	4622.2	6	ppm
ABC												
COS	0		0.9924	0		0		0	0	36560.9	3	ppm
DEF												
NDr	_									-8181.1	7	ppm
Legion	0			0		0		0	0	12607.0	5	Many
	L1-F1	L1-F2	L1-F3	L1-F4	L1-F5	L1-F6	L2-F	1 L2-F2	L2-F3	L2-F4	L2-F5	L2-F6
Zero transmittance	0.78964		0.58945		0.86204							
	Span Concentrat		pan ictor	Zero Offset	Zero Drift Result		Drift mit	Span Drift Result	Span Drift Limit		ed Z-Cal ntration	Current Reading
	0	41	0000	0.12	0	1	23	0	0		0	14.38

Figure 34 – Calibration Panel

Several types of calibration can be specified using the pop-up Calibration Action menu:

Zero calibration can be done automatically in response to a contact input, or manually. An appropriate Zero gas must be flowing through the analyzer.

If the analyzer will be used to measure a sample concentration that is significantly different from that of the original (factory-set) range, Ametek recommends re-spanning the analyzer.

To re-span each gas species:

- Enter the concentrations of the components in the Calibration Gas in the "Span Concentration" column of the table.
- Let Zero Gas flow through the analyzer, and adjust the Zero Gas regulator to:
 < 35 kPa gage @ 1 litre/min (<5 psig @ 2.0 scfh).
- When the live concentration value stabilizes, perform a Manual Zero by selecting "Manual Zero UV" from the Calibration Action

menu, a	nd clicking	"Start	Calibration":
---------	-------------	--------	---------------

Calibration Averaging Duration	s	ec
Calibration Action		Now
Manual Zero UV	∇	Calibrating
Time Remaining 0		Abort S Calibration

The button changes to read "Now Calibrating", and the "Time remaining" counts down to zero.

- The Zero-Drift result will be updated on the screen.
- Let Span Gas flow through the analyzer, and adjust the Span Gas regulator to:
 < 35 kPag @ 1 litre/min (<5 psig @ 2.0 scfh).
- Wait for the live reading to stabilize (the value should be close to the concentration in the Span gas).
- Perform a manual Span for the gas species being calibrated by selecting the species to be calibration from the Calibration Action menu and clicking "Start Calibration":

Calibration Averaging Duration	sec
Calibration Action	Start
✓ Manual Zero UV	Calibration
Manual Span H2S	Abort
Manual Span SO2	Calibration
Manual Span SO 🔗	
Manual Span UV-4	
Manual Span UV-5	
Manual Span UV-6	Unit of
Manual Span UV-7	Measure
Manual Span UV+	PPM
Manual Zero O2	%
Manual Span O2	PPM
Manual Zero UV & O2	%
Auto-CAL0	ppm
Auto-CAL1	ppm
Auto-CAL2	Custom
Auto-CAL3	
Auto-CAL4	ppm
Full Auto-CAL	

Figure 35 – Calibration options

		• The Span-Drift result will be updated on the screen.
⊢		• Oxygen can also be zeroed at the same time as the UV- absorbent species (requires an oxygen sensor to be installed, and requires the Zero Gas to be nitrogen). This option is only visible if an oxygen sensor has been installed.
RAF	Abort	You can abort a calibration by clicking "Abort Calibration". The "Calibration in Progress" indicator will remain on the screen until the calibration has been aborted (this may take a few seconds).
Ω	Auto Calibration	The analyzer can also perform calibration actions automatically if the Zero gas and Calibration gas supply valves are actuated by solenoids in the analyzer.
Х		These solenoids are part of the optional Sample System module. For information about assigning the solenoids to auto calibration tasks, please refer to Sample System Panel – Solenoids on page 2-86.
REVIEW		The analyzer will introduce Zero Gas into the sample system by energizing the Zero Gas Solenoid, and then wait a configurable time for Zero gas to flow through the analyzer (you set this up using the Sample System – Auto CAL panel: see page 2-87).
Ř		The Zero Offset values are adjusted based on the average reading during the <i>Calibration Averaging Duration</i> .
		The analyzer will introduce calibration gas into the sample system by energizing the corresponding solenoid, and wait for it to flow through the analyzer.
		The span is automatically adjusted based on the average reading during the <i>Calibration Averaging Duration</i> .
	Auto-CAL 04	Up to four species can be calibrated automatically. Auto-CAL 0 is reserved for Zero Gas calibration.
	Full Auto Calibration	In <i>Full Auto Calibration</i> , the analyzer will automatically cycle sequentially through each of the Auto-CAL functions.

Triggered Calibrations

The zero offsets and calibrations will be adjusted automatically.

more information (Customer I/O Panel - Contact Inputs).

If the optional Customer I/O board has been installed, dry contact inputs can trigger auto-CAL functions. Please refer to page 2-67 for

2-37 | Configuration Software for Ametek 9900 Series Analyzers

The Calibration Table		Span Concentration	Span Factor	Zero Drift Result	Zero Drift Limit	Span Drift Result	Span Drift Limit	Current Reading	Unit of Measure			
	H2S ABC	25.00	0.9580	13249.44	0	0	0	-4099.41	ppm			
	COS	0	0.9924	-24383.31	0	0	0	92115.06	ppm			
	DEF											
	NDr			10070.00		0		5915.36	ppm			
	Legion	0		16978.60	0	0	0	23028.89	Many			
Span Concentration	Enter the	concentr	ation o	f each s	pecies i	n the ca	alibratic	on gas.				
Span Factor	At the on	d of a cal	ibratio	n tha ar	aluzar	aalaulat	tos o no	Snon	Factor			
Span racior	At the end				-			-				
	However	· •					-		•			
	enter you	r own Sp	an Fac	tor, no v	alidatio	on is pe	rformed	l on the	new			
	enter your own Span Factor, no validation is performed on the new Span Factor.											
	Please note that if the calculated span factor is not reasonably close											
					*			•				
	1.0 (typic					-	y that e	ther the	e old			
	calibratio	n or the r	new cal	ibration	is inva	lid.						
Zero Drift Result	At the end	d of a cal	ibratio	n the ar	alvzer	calculat	tes the c	lifferen	ce			
					•							
	between t	life new Z	ero car	IDIATION	and the	e previo	ous one.					
Zero Drift Limit	If the Zer	o Drift R	esult is	greater	than th	e Zero	Drift Li	imit. at	the end			
	of a zero			-								
							sidered					
	excessive	e arm, and	d is aut	omatica	iny disc	arded.						
Span Drift Result	At the end	d of a cal	ibratio	n. the ar	alvzer	calculat	tes the c	lifferen	ce			
	between t											
	betweent		pan i c		i uic pi	evious (JIIC.					
Span Drift Limit	At the end	d of a cal	ibratio	n, the ar	alyzer	calculat	tes the c	lifferen	ce			
	between t				•							
	is greater		-		-							
	•					canoral	1011 15 0	onsiden				
	have exce	essive dri	n, and	is disca	raea.							

Zero Transmittance Table

	L1-F1	L1-F2	L1-F3	L1-F4	L1-F5	L1-F6	L2-F1	L2-F2	L2-F3	L2-F4	L2-F5	L2-F6
Zero transmittance	0.85938		0.39725		0.86630							

When the analyzer performs a zero calibration, it also automatically measures the transmittance at each filter position.

The zero transmittance values can be changed manually if necessary, but this should not normally be necessary.

Ametek suggests recording these values for long-term diagnostics.

Oxygen Calibration Table

		Span Concentration	Span Factor	Zero Offset	Zero Drift Result	Zero Drift Limit	Span Drift Result	Span Drift Limit	Elevated Z-Cal Concentration	Current Reading
0	Oxygen (%)	0	1.0000	0.12	0	1.23	0	0	0	14.38

If an optional Oxygen sensor has been installed, it can be calibrated in the same way as the UV-absorbent species.

Note that if you wish to Zero the Oxygen sensor in the same sequence as a UV-absorbent species, the Zero gas must be Nitrogen. Ametek suggests recording these values for long-term diagnostics.

SEN993x Calibration Panel

The SEN993x Calibration panel lets you calibrate the sensors attached to a SEN993x system:

					Installed 993	x Sensors			🔁 Refr
N Analog	SEN Serial	Ser Ser Ser	al Sensor Types ial Sensor 1 Type ial Sensor 2 Type ial Sensor 3 Type ial Sensor 4 Type	smartGAS EVO Nenvitech NET3	 TC-A TC-B IR-A IR-B SEC-A SEC-B Serial-1 Serial-3 Serial-4 		Calibratior Averaging Dura calibration Action Aanual Zero all ser Time Rema	ation s	ec Start Calibration Abort Calibration
- 1									
FC Sensor C		Span	Pressure @	Zero Cal	Zero Cal	Signal @	Paw	Current	T
FC Sensor C	alibration Span Gas Concentration	Span Factor	Pressure @ Zero Cal	Zero Cal Target (mV)	Zero Cal Delta (mV)	Signal @ Zero Cal (mV)	Raw Signal (mV)	Current Reading	
СО	Span Gas								
	Span Gas Concentration	Factor	Zero Cal	Target (mV)	Delta (mV)	Zero Cal (mV)	Signal (mV)	Reading	
СО	Span Gas Concentration 0 alibration	Factor 1.0000	Zero Cal 0.1 kPa	Target (mV) 51.2	Delta (mV) 3.2	Zero Cal (mV) 347.0	Signal (mV) 325.3	Reading 631108.625 %	Differential
CO TC - B	Span Gas Concentration 0	Factor	Zero Cal	Target (mV)	Delta (mV)	Zero Cal (mV)	Signal (mV)	Reading	Differential Signal (mV)
CO TC - B R Sensor C: H1	Span Gas Concentration 0 alibration Span Gas	Factor 1.0000 Span	Zero Cal 0.1 kPa Signal	Target (mV) 51.2 Reference sig	Delta (mV) 3.2 Differential sig	Zero Cal (mV) 347.0 Zero Cal	Signal (mV) 325.3 Zero Cal	Reading 631108.625 % Reference	
CO TC - B R Sensor C	Span Gas Concentration 0 alibration Span Gas Concentration	Factor 1.0000 Span Factor	Zero Cal 0.1 kPa Signal Offset (mV)	Target (mV) 51.2 Reference sig @ Zero Cal	Delta (mV) 3.2 Differential sig @ Zero Cal	Zero Cal (mV) 347.0 Zero Cal Target (mV)	Signal (mV) 325.3 Zero Cal Max Delta (mV)	Reading 631108.625 % Reference Signal (mV)	Signal (mV)
CO TC - B R Sensor C: H1	Span Gas Concentration 0 alibration Span Gas Concentration 0 0	Factor 1.0000 Span Factor 1.0000	Zero Cal 0.1 kPa Signal Offset (mV) 0.0	Target (mV) 51.2 Reference sig @ Zero Cal 1108.1	Delta (mV) 3.2 Differential sig @ Zero Cal 1138.4	Zero Cal (mV) 347.0 Zero Cal Target (mV) 204.8	Signal (mV) 325.3 Zero Cal Max Delta (mV) 0.8	Reading 631108.625 % Reference Signal (mV) 1108.6	Signal (mV) 1153.8
CO TC - B R Sensor C: H1 H2	Span Gas Concentration alibration Span Gas Concentration 0 0 Calibration Span Gas	Factor 1.0000 Span Factor 1.0000 1.0000 Span	Zero Cal 0.1 kPa Signal Offset (mV) 0.0 414.5 Pressure @	Target (mV) 51.2 Reference sig @ Zero Cal 1108.1 21.4 Low	Delta (mV) 3.2 Differential sig @ Zero Cal 1138.4 409.5 High	Zero Cal (mV) 347.0 Zero Cal Target (mV) 204.8 409.5 Signal	Signal (mV) 325.3 Zero Cal Max Delta (mV) 0.8 0.4 Raw	Reading 631108.625 % Reference Signal (mV) 1108.6 28.0 Current	Signal (mV) 1153.8

SEN Analog SEN Serial

	Span Gas	Zero Cal Signal	Карра	Internal Status	Raw Voltage	Power Supply	Hours To	Current Reading
	Concentration	Count		Code	(V)	(V)	Replacement	
Ser-A								
Serial-2								
Ser-C	0	0	0	0	0.000	0.7	0.0	1025563.000 %
Ser-D								

SmartGAS EVO Calibration

	Span Gas Concentration	Zero Offset	Span Factor	Internal Status Code	Sensor Temperature (°C)	Sensor Pressure (kPa)	Current Reading
Ser-A	12.346	0	0	0	0.0	0.0	64.000 ppm
Serial-2							
Ser-C							
Ser-D	0	0	0	0	0.0	0.0	0 %

Figure 36 – SEN Calibration Panel

		_
	Calibration 15 Averaging Duration	sec
	(none)	
	🗸 Manual Zero all sensors 📐	St: Calibi
l	Manual Span-CAL TC-A 😽	Ab
l	Manual Span-CAL TC-B	Calib
l	Manual Span-CAL IR-A	Cano
1	Manual Span-CAL IR-B	
l	Manual Span-CAL SEC-A	
	Manual Span-CAL SEC-B	
I	Manual Span-CAL Serial-1	
I	Manual Span-CAL Serial-2	
Ň	Manual Span-CAL Serial-3	Nenvite
I	Manual Span-CAL Serial-4	
-	Auto CAL0	smartG
1	Auto CAL1	Nenvite
	Auto CAL2	smartG
1	Auto CAL3	omano
	Auto CAL4	
I	Full Auto-CAL	

Several types of calibration can be specified using the pop-up Calibration Action menu:

Zero calibration can be done automatically in response to a contact input, or manually. An appropriate Zero gas must be flowing through the analyzer (this can be automated using the solenoids in the optional Customer I/O board).

If the analyzer will be used to measure a sample concentration that is significantly different from that of the original (factory-set) range, Ametek recommends re-spanning the analyzer.

To re-span each gas species:

- Enter the concentrations of the components in the Calibration Gas in the "Span Concentration" column of the table.
- Let Zero Gas flow through the analyzer, and adjust the Zero Gas regulator to:

< 35 kPa gage @ 1 litre/min (<5 psig @ 2.0 scfh).

• When the live concentration value stabilizes, perform a Manual Zero by selecting "Manual Zero all sensors" from the Calibration Action menu, and clicking "Start Calibration":

Calibration Averaging Duration	s	ec
Calibration Action		Start
Manual Zero all sensors	∇	Calibration
Time Remaining 0		Abort Calibration

The button changes to read "Now Calibrating", and the "Time remaining" counts down to zero. Please note that it can take up to a minute for the calibration countdown to start (you'll see a message on screen to this effect).

- When the Zero Calibration completes, the Zero-Drift result will be updated on the screen.
- Let Span Gas flow through the analyzer and adjust the Span Gas regulator to:
 < 35 kPa gage @ 1 litra/min (<5 psig @ 2.0 sofh)
 - < 35 kPa gage @ 1 litre/min (<5 psig @ 2.0 scfh).
- Wait for the live reading to stabilize (the value should be close to the concentration in the Span gas).
- Perform a manual Span for the gas species being calibrated by selecting the species to be calibration from the Calibration Action menu and clicking "Start Calibration":

	Calibration Averaging Duration
	(none) ✓ Manual Zero all sensors Manual Span-CAL TC-A Manual Span-CAL TC-B Manual Span-CAL IR-A Manual Span-CAL IR-B Manual Span-CAL SEC-A Manual Span-CAL SEC-B
	Manual Span-CAL Serial-1 Manual Span-CAL Serial-2 Manual Span-CAL Serial-3 Manual Span-CAL Serial-4 Auto CAL0 Auto CAL1
	Auto CAL2 Auto CAL3 Auto CAL4 Full Auto-CAL
	• The Span-Drift result will be updated on the screen.
Abort	You can abort a calibration by clicking "Abort Calibration". The "Calibration in Progress" indicator will remain on the screen until the calibration has been aborted (this may take a few seconds).
Auto Calibration	The analyzer can also perform calibrations automatically if the Zero gas and Calibration gas supply valves are actuated by solenoids in the analyzer.
	These solenoids are part of the optional Sample System module. For information about assigning the solenoids to auto calibration tasks, please refer to Sample System Panel – Solenoids on page 2-86.
	The analyzer will introduce Zero Gas into the sample system by energizing the Zero Gas Solenoid, and wait for a configurable time for Zero gas to flow through the analyzer (the Sample return/flush delay on the Sample System – Auto CAL panel: see page 2-87).
	The Zero Offset values are adjusted based on the average reading during the <i>Calibration Averaging Duration</i> .
	The analyzer will introduce calibration gas into the sample system by energizing the corresponding solenoid, and wait the <i>Sample return/flush delay</i> for it to flow through the analyzer.
	The span is automatically adjusted based on the average reading during the Calibration Averaging Duration.
Auto-CAL 04	

-

Configuring the Analyzer | 2-42

	Up to four species can be calibrated automatically. Auto-CAL 0 is reserved for Zero Gas calibration.
Full Auto Calibration	In <i>Full Auto Calibration</i> , the analyzer will automatically cycle sequentially through all of the Auto-CAL functions.
	The zero offsets and calibrations will be adjusted automatically.
Triggered Calibrations	If the optional Customer I/O board has been installed, dry contact inputs can trigger auto-CAL functions. Please refer to page 2-67 for more information (Customer I/O Panel – Contact Inputs).

SEN993x – TC Sensor Calibration

TC Sensor Calibration

	Span Gas Concentration	Span Factor	Pressure @ Zero Cal	Zero Cal Target (mV)	Zero Cal Max Delta (mV)	Signal @ Zero Cal (mV)	Raw Signal (mV)	Current Reading
CO	1.5	12.34	50.0 kPa	51.2	3.2	238.3	280.8	5642.307
CO2	8	13.13	50.0 kPa	102.4	1.6	281.5	332.1	337.803

Span Gas Concentration	Enter the concentration of each species in the calibration gas.
Span Factor	At the end of a calibration, the analyzer calculates a new Span Factor. However, it is possible to override the calculated Span Factor. If you enter your own Span Factor, no validation is performed on the new Span Factor.
	Please note that if the calculated span factor is not reasonably close to 1.0 (typically between 0.85 and 1.15), it is likely that either the old calibration or the new calibration is invalid.
Pressure @ Zero-Cal	<i>Pressure</i> (<i>a</i>) Zero-Cal is factory assigned, unless a sample gas sensor that measures pressure has been installed, in which case it is updated by the analyzer following a Zero Calibration. The zero gas signal at the time of calibration is also recorded.
Zero Cal Target (mV)	The Zero Cal signal target is the desired signal from the sensor with zero gas flowing through the system.
Zero Cal Max Delta (mV)	If the Zero Drift Result is greater than the Zero Cal Max Delta at the end of a zero calibration, the calibration is considered to have excessive drift, and is discarded by the analyzer.
Signal @ Zero Cal (mV)	At the end of Zero calibration, the analyzer records the raw sensor signal.
Raw signal (mV)	The raw signal from the thermal conductivity sensor is continuously displayed.
Current Reading	The current calculated concentration of the gas species shown in the row header.

SEN993x - IR Sensor Calibration

IR Sensor Calibration									
	Span Gas Concentration	Span Factor	Signal Offset (mV)	Reference sig @ Zero Cal	Differential sig @ Zero Cal	Zero Cal Target (mV)	Zero Cal Max Delta (mV)	Reference Signal (mV)	Differential Signal (mV)
CO2	12	1.111	25	1006.2	54.2	100	2.5	1046.3	101.9
Acetl	5	0.987	25	200.5	8.5	100	1.5	230.8	18.8

Span Gas Concentration	Enter the concentration of each species in the calibration gas.
Span Factor	At the end of a calibration, the analyzer calculates a new Span Factor. However, it is possible to override the calculated Span Factor. If you enter your own Span Factor, no validation is performed on the new Span Factor.
	Please note that if the calculated span factor is not reasonably close to 1.0 (typically between 0.85 and 1.15), it is likely that either the old calibration or the new calibration is invalid.
Signal Offset (mV)	The signal offset can range from zero to 2,500 mV.
Pressure sig @ Zero Cal	Updated by the analyzer at the end of a zero calibration
Differential sig @ Zero Cal	Updated by the analyzer at the end of a zero calibration.
Zero Cal Target (mV)	The Zero Cal signal target is the desired signal from the sensor with zero gas flowing through the system.
Zero Cal Max Delta (mV)	If the Zero Drift Result is greater than the Zero Cal Max Delta at the end of a zero calibration, the calibration is considered to have excessive drift, and is discarded by the analyzer.
Reference signal (mV)	The reference signal is the voltage at the detector for the signal path that does not pass through the gas being measured.
Differential signal (mV)	The difference between the voltage measured at the detector for the reference signal, and the voltage at the detector for the signal that passes through the gas under test.

SEN993x – SEC Sensor Calibration

SEC Sensor Calibration

	Span Gas Concentration	Span Factor	Pressure @ Factory Cal	Low Scale	High Scale	Signal @ Zero Cal	Raw Signal (mV)	Current Reading
H2S	5000	1.0101	100.95 kPa	0	5	7.7	48.8	314.000
CI	5000	0.96960	101.325 kPa	0	5	6.1	40.9	314.000

The SE Sensor Electronics SEC 3000 is typically used to detect H2S.

Span Gas Concentration	Enter the concentration of each species in the calibration gas.
Span Factor	At the end of a calibration, the analyzer calculates a new Span Factor. However, it is possible to override the calculated Span Factor. If you enter your own Span Factor, no validation is performed on the new Span Factor.
	Please note that if the calculated span factor is not reasonably close to 1.0 (typically between 0.85 and 1.15), it is likely that either the old calibration or the new calibration is invalid.
Pressure @ Factory Cal	This value is set at the Ametek factory, but can be changed using the analyzer front panel.
Pressure sig @ Zero Cal	Updated by the analyzer at the end of a zero calibration
Low Scale	Low scale, in engineering units.
High Scale	High scale, in engineering units.
Signal @ Zero Cal (mV)	At the end of Zero calibration, the analyzer records the raw sensor signal.
Raw signal (mV)	The current raw signal from the SE sensor.
Current Reading	The current calculated concentration of this gas species.

SEN99xx Serial Sensor Calibration

N Analog	SEN Serial							
lenvitech Ne	et3 Cyber Calibration							
	Span	Zero Cal	Kappa	Internal	Raw	Power	Hours	Current
	Gas Concentration	Signal Count		Status Code	Voltage	Supply	To	Reading
	Concentration	Count		Code	(V)	(V)	Replacement	
Ser-A								
Serial-2								
Ser-C	0	0	0	0	0.000	0.7	0.0	1226897.87
Ser-D								
001 0								
0010								
	/O Calibration							
	VO Calibration	Zero	Span	Internal	Sensor	Sensor	Current	T
		Zero Offset	Span Factor	Internal Status	Sensor Temperature	Sensor Pressure	Current Reading	T
	Span							1
	Span Gas			Status	Temperature	Pressure		
imartGAS E	Span Gas Concentration	Offset	Factor	Status Code	Temperature (°C)	Pressure (kPa)	Reading	
SmartGAS E	Span Gas Concentration	Offset	Factor	Status Code	Temperature (°C)	Pressure (kPa)	Reading	

Up to four sensors can be attached to the SEN serial port if is configured in RS-485 mode. Only one sensor (on serial port 4) can be attached if the port is in RS-232 mode.

This panel lets you calibrate Nenvitech Net3 Cyber sensors, or SmartGAS EVO sensors.

There is a table for each sensor type, which only shows rows for that sensor (any other rows are greyed out).

NenviTech Net3 Cyber Calibration

Span Gas Concentration	Enter the concentration of each species in the calibration gas, in the concentration units that you are using for that species.
Zero Cal Signal Count	At the end of Zero calibration, the analyzer records the raw signal value from the Nenvitech sensor.
Карра	Kappa is a scaling factor, and is stored on the Nenvitech sensor.
Internal Status Code	The Net3 Cyber sensor reports an internal status code.
Raw Voltage (V)	The real-time voltage reported by the sensor (transmitted serially to the analyzer).
Power Supply (V)	The real-time voltage reported by the Nenvitech sensor (transmitted serially to the analyzer).

SmartGas EVO Calibration

Span Gas Concentration	Enter the concentration of each species in concentration units that you are using for t	e ·
Zero Offset		
2-47 Configuration Software	for Ametek 9900 Series Analyzers	September 2022

Span Factor

The EVO sensor stores a raw signal value at the end of Zero calibration, and this value is updated. You can change it, but no validation will be performed on your changes.

At the end of a calibration, the analyzer calculates a new Span Factor. It is possible to override the calculated Span Factor, but if you enter your own Span Factor, no validation is performed on the new Span Factor.

Please note that if the calculated span factor is not reasonably close to 1.0 (typically between 0.85 and 1.15), it is likely that either the old calibration or the new calibration is invalid.

Internal Status Code

The EVO SmartGas sensor internal status code can be interpreted as a 16 bit status code, where the meaning of each bit is:

- 0 test
- Warmup 1
- 2 Syserr
- 3 Alarm
- 4 Warning
- 5 Startup
- 6 Corr (normally on)
- 7 MW_OK (normally on)
- 8 Inc
- 9 Ex
- 10 Tox
- MW active 11
- 12 EEP error
- WDG Warn 13
- 14 Power On (normally on)
- Reserved 15

The individual bits can be viewed on the analyzer front panel:

Diagnostic ... Sensors ... EVO Sensor Diagnostic Readings ... Status Code Screen

EV01 Status Code	EV02 Status Code
Ox 40 C0	Ox 40 C0
🛞 Reserved 🛛 🍋 MW_ok	💮 Reserved 🛛 🥘 MW_ok
🥘 Power_On 🏼 🥘 Corr	🥘 Power_On 🕚 Corr
💮 WDG_Warn 💮 Startup	💮 WDG_Warn 💮 Startum
EEP_error	EEP_error
<pre>MW_active @Alarm</pre>	🛞 MW_active 🛞 Alarm
Tox Syserr	🔅 Tox 💮 Syserr
🛞 Ex 💮 Warmup	🛞 Ex 💮 Warmup
Inc Test	💮 Inc 💮 Test
aprile aprese	ap the ap test

Informational LEDs are blue. If the WDG Warn, EEP Error, or Syserr bits are set, the sensor should be replaced.

Sensor Temperature (C) Sensor Pressure

The self-reported EVO Smartgas temperature. The self-reported EVO Smartgas gas pressure.

UV Bench Setup Panel

													Refres Value	
Auto Setup Levels			C 11		tart Setup									
Torget DMT eigned level	Lev		of M			Progre	ss							
Target PMT signal level Max lamp pulse currren					oort Setup	I								
Lamp Currents (mA)	N			L			L.C.	Ĩ		0 of8ste	ps			
Lamp Currents (mA)	Base	F1	F2 0.000	F3 0.000	F4 0.000	F5 0.000	F6 0.000		ALC		ps			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA)	Base	F1	F2			F5			ALC		ps			
Lamp Currents (mA)	Base 0.000 0.000	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		ps			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA)	Base	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		ps			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA)	Base 0.000 0.000	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		ps			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA) HV	Base 0.000 0.000 HV (V) 0.0	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		ps			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA) HV	Base 0.000 0.000 HV (V) 0.0	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		pS			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA) HV	Base 0.000 0.000 HV (V) 0.0	F1	F2 0.000	0.000	0.000	F5 0.000	0.000]	ALC		pS			
Lamp Currents (mA) Lamp 1 setpoint (mA) Lamp 2 setpoint (mA) HV	Base 0.000 0.000 HV (V) 0.0	F1	F2 0.000	0.000	0.000	F5 0.000	0.000		ALC		pS			

Figure 38 – Bench Setup panel

Auto Setup	Auto Setup Levels
1	Level U of M
	Target PMT signal level 8.0 V Abort Progress
	Max lamp pulse currrent 10.0 mA Auto Setup 4 of 8 steps
Start Auto Setup	Auto Setup optimizes the PMT gains and source lamp currents, and takes approximately three minutes. Always perform an Auto-Setup after any lamps, optical filters, or PMTs have been installed or replaced.
	When you click <i>Start Auto Setup</i> , the button changes to read <i>Setup in Progress</i> and the Progress bar is updated as the auto setup progresses.
Abort Auto Setup	It can take a few seconds to abort the setup sequence if you choose to click <i>Abort Auto Setup</i> .
Auto Setup Levels	Target PMT Signal is the maximum PMT signal level (volts) that will be used during Auto Setup (010 V).
	Max Lamp Pulse is the maximum pulse current that will be applied to the key filter during Auto setup (014 mA).
	AMETEK recommends leaving Auto Setup Levels at the factory defaults.

Lamp Currents	Lamp Currents (mA)										
		Base	F1	F2	F3	F4	F5	F6	I		
	Lamp 1 setpoint (mA)	2000	5500	6000	10000	8500	7500	9000			
	Lamp 2 setpoint (mA)	2000	5500	6000	9500	8500	7200	9200			
Base (mA)	The base-current source lamp. Thi pulsed. Ametek c	s is the	e "simr	ner" c	urrent	when	the lar				
	Lamp 1 is closest Lamp 2 is farthes			•		1					
Lamp Setpoint (mA)	Defines the source lamp pulse current control signal for each filter. The normal operating range is between the Lamp Base and the Lamp Max settings. The control signal for the key filter is Lamp Max.										
	The Automatic Lamp Control Setpoint signal is automatically calculated from the Reference PMT for each filter when Auto-Setup completes. The Automatic Lamp Control function adjusts the lamp pulses to maintain the Reference PMT signals.										
	The filter with the highest current level is the <i>weakest wavelength</i> for each lamp. This is the filter position that you should choose when aligning a new UV lamp.										
	If a filter positior the current at that		-					cedure	will set		
ALC	Automatic Lamp an Auto-Setup fu should only be tu	nction	, and s	hould	be on	during	, norm	al oper	ation. It		
High Voltage	HV										
		H	V (V)								
	Measure PMT	5	50								

The high voltage range is 300...800V for each lamp, and can be measured at test points HV1 and HV2 on the PMT Supply board.

750

After an auto setup completes, Ametek recommends recording the values on this panel for diagnostic purposes.

Reference PMT

UV Bench Diagnostics Panel

Photometric Data								
		L1-F1	L1-F2	L1-F3	L1-F4	L1-F5	L1-F6	L2-F1
Absorbance		-0.00076	0	-0.07222	0	-0.06203	0	0
Transmittance		0.71956	1.00000	1.13599	1.00000	1.71093	1.00000	1.0000
	Base	L1-F1	L1-F2	L1-F3	L1-F4	L1-F5	L1-F6	L2-F1
Bench signals		11.51	11.50	1.1.52	11.54	14.55	14.50	10.51
PMT - measure	Dase	0.063	0.000	0.036	0.000	0.026	0.000	0.000
PMT - reference		0.032	0.000	0.027	0.000	0.033	0.000	0.000
This reference	_	0.052	0.000	0.027	0.000	0.055	0.000	0.000
Lamp 1 HV (V)	550.0	550.0	0.0	550.0	0.0	550.0	0.0	
Lamp 2 HV (V)	195.0							0.0
	0.003	0.003	0.000	0.006	0.000	0.003	0.000	
Lamp 1 current (mA) Lamp 2 current (mA)	0.092							0.000

Figure 39 – The Bench Diagnostics panel for a multi-species analyzer

The *Bench Diagnostics Panel* lets you compare photometric results with the lamp control parameters and PMT signal levels at each filter position. It is particularly useful when performing diagnostics on the analyzer. Information in this panel is read-only.

L2-F3

1.00000

L2-F3

0.000

0.000

0.0

0.000

0

L2-F4

1.00000

L2-F4

0.000

0.000

0.0

0.000

0

L2-F5

1.00000

L2-F5

0.000

0.000

0.0

0.000

0

L2-F6

1.00000

L2-F6

0.000

0.000

0.0

0.000

0

Photometric Data

Absorbance and transmittance values are shown for each filter position.

Transmittance
$$T_p = \left(\frac{Measure PMT}{Reference PMT}\right)$$

Absorbance = $-\log\left(\frac{T_p}{T_z}\right)$

where:

 T_p is the transmittance with process gas @ lamp + filter

 T_z is the transmittance with zero gas @ lamp + filter

The Measure and Reference PMT voltage at each Filter position can also be measured at test points TP3 and TP5 on the PMT signal board.

The Lamp excitation pulse voltages and currents are shown at each filter position.

The voltages at the PMT supply board are displayed (they can also be read at test points HV1 and HV2, and should be in the range 300...800V).

Applicable to motorized (multi-species) analyzers only.

HV

RPM

UV99xx Standard Analysis Panel

																		Refres
ell Setup											Cel	II T&P	Compe	nsation		Analysis Alg	orithm	
Cell length		40.00	cm		Т						Dy	nami	c cell ter	mperature		Neutra	drift com	pensation
Nominal cell ter	nperature	25.0	°C								1	Dyn	amic ce	Il pressure			Linea	arization 1
Nominal cell pre	essure	680.0	mm	Hg														arization 2 surement
daptive Filtering	I				_												dual-range	blending extension
		Sigma		Gain	_										_		SO2	crosstalk
Absorbance		0.0050	0.01		_						pressibil	ity		1.0000	_		MeSH o	correction
Neutral drift		0.0500	0.01	00						Alph	a factor			0	_		Hot a	pplication
															_		iquid mea	surement
		1	2	2		3		4		5	6		7			High absor	bance alte	
Linearization co	efficients	1000.00	000 2	2100.0	0000	0		0		1000.0000	0		0					Reserved
																		Reserved
		L1-F1	L1-F2	L1-	F3 L1-	F4	L1-F5	L1-F6	L2-F1	L2-F2	L2-F3	L2-F4	L2-F	5 L2-F	5			Reserved
Absorbance offs	et	0	0	0	0	ĺ	0	0	0	0	0	0	0	0				Reserved Reserved
nalysis matrix											1			I				
	Species Name	Unit Name	Unit Conversi		L1-F1	L1-		L1-F3	L1-F4	L1-F5	L1-F6		2-F1	L2-F2	L2-F3	L2-F4	L2-F5	L2-F6
UV species 1	H2S	ppm	1.0000		-1818.00	_		25.1230	0	1.0325	0	0		0	0	0	0	0
UV species 2	ABC		1.0000		0	0		0	0	0	0	0		0	0	0	0	0
UV species 3	COS	ppm	1.0000		152.0000	-		1.3250	0	0	0	0		0	0	0	0	0
UV species 4	DEF		1.0000		0	0		0	0	0	0	0		0	0	0	0	0
UV species 5	H2	ppm	1.0000		0	0		0	0	0	0	0		0	0	0	0	0
UV species 6		ppm	1.0000		0	0		0	0	0	0	0		0	0	0	0	0
UV species 7			1.0000		0	0		0	0	0	0	0		0	0	0	0	0
	NDr	ppm			0	0		0	0	39.2200	0	0		0	0	0	0	0
UV species 8 Aggregated UV	Agg	ppm	1.0000															

Figure 40 – Analysis Setup

The Analysis panel lets you configure the concentration analysis process.

Measurement Cell

Cell Setup

Cell length	40.00	cm
Nominal cell temperature	25.0	°C
Nominal cell pressure	680.0	mmHg

You can specify the cell length (on the transmittance axis) and nominal operating conditions (ie: the values that are used if a sensor has not been installed).

Your preferred unit of measure is used for pressures.

Cell T&P Compensation

The measurement cell can be compensated for the measured pressure and temperature if pressure and temperature transducers have been installed. Leave them unchecked to use the nominal values described in the previous section.

Cell temperature compensation:

dynamic using the cell temperature measurement

Cell pressure compensation:

- static or pseudo-dynamic via Modbus master update
- dynamic using the cell pressure measurement

Adaptive Filtering

Adaptive Filtering

	Sigma	Min Gain
Absorbance	2.56	1.0
Neutral drift	1.254	0.0000

You can apply an adaptive filter to absorbance and neutral drift.

These values should not be changed unless advised by Ametek.

Compressibility	0.0000	
Alpha factor	0.0000	
Sample source	Process stream	∇

The super compressibility factor, usually notated Z, is a function of the composition of the sample gas, and gas pressure (notated Z_b at contract base conditions, and Z_f at flowing conditions). It is normally calculated from a molar analysis using an equation of state calculation such AGA-8, AGA-10 or SGERG. If it is unknown, enter 1.0 to simply use ideal gas law. The analyzer does not perform an equation of state calculation.

 $Concentration_{corrected} = \frac{Concentration}{Z}$

The analyzer automatically calculates the Dual-range SO2 blending alpha correction factor when the SO2 crosstalk procedure is performed.

Do not change it unless advised to by Ametek.

The Sample source can be set to either of:

- Process stream
- non Process stream

Analysis Algorithm

Neutral drift compensation	\checkmark
Linearization 1	\checkmark
Linearization 2	
NOx measurement	
S02 dual-range blending	
S02 triple-range extension	
SO2 crosstalk	
MeSH correction	\checkmark
Hot application	\checkmark
Liquid measurement	
ligh absorbance alternate UV1	
Reserved	\sim

The Analysis algorithm can include a variety of optional calculations:

Neutral drift compensation

NOx measurement requires a motorized filter wheel

SO2 dual-range blending requires a motorized filter wheel

SO2 extended range requires a motorized filter wheel

SO2 crosstalk correction requires a motorized filter wheel

MeSH (methyl mercaptan) correction requires the analyzer to be configured to measure MeSH

The High absorbance alternate UV1 algorithm is configured in the *Advanced* tab.

Hot application enables the analyzer to perform additional calculations in a hot wet gas sample, and requires an optional oven to be installed

Liquid application is for liquid samples

Ametek cautions that the Analysis Algorithm should only be modified by service personnel.

Absorbance Offsets

Every lamp + filter position can be assigned a linear offset.

	L1-F1	L1-F2	L1-F3	L1-F4	L1-F5
Absorbance offset	0.00000	0.00000	0.00000	0.00000	0.0000

These values should not be changed unless advised by Ametek.

Linearization Coefficients There are seven coefficients that can be used for either linearization or interference polynomial compensation.

	1	2	3	4	5	6	7
Linearization coefficients	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

They are used if the analysis algorithm includes Linearization-1 or Linearization-2.

These values should not be changed unless advised by Ametek.

Analysis Matrix One of the challenges of UV-absorbance spectroscopy is that a species that absorbs UV light will generally do so at multiple wavelengths. This means that multiple UV-absorbent species may affect UV absorption within the wavelength range of an analyzer filter.

The Analysis Matrix is responsible for partially calculating the concentration output and negating the effects of cross-talk by interfering gas species.

If the row for a species is contains only zeros, that species will be flagged as not valid, and will not be displayed in pop-up menus. It cannot be acquired or logged. To enable a species, simply enter matrix coefficients in the row for that species.

Similarly, a lamp & filter combination will be flagged as invalid if all entries in the column are zero. To enable a lamp & filter combination, enter matrix coefficients in the appropriate column.

Only two rows can be used for non-motorized analyzers, as only L1-F2 and L2-F6 are available.

	Species Name	Unit Name	Unit Conversion	L1-F1	L1-F2	L1-F3	L1-F4	L1-F5	L1-F6	L2-F1	L2-F2	L2-F3	L2-F4	L2-F5	L2-F6
UV species 1	H2S	ppm	1.0000	-18.2000		22.6300		0							
UV species 2															
UV species 3	COS	ppm	1.0000	151.5200		0		0							
UV species 4															
UV species 5															
UV species 6															
UV species 7															
UV species 8	NDr	ppm		0		0		39.2200							
Aggregated UV	Legion	Many	1.0000												

Figure 41 – The Analysis Matrix

For each species, you set the name of the species and the unit of measure here. The matrix coefficients are normally calculated by Ametek to produce concentration results in ppm. To change the concentration unit of measure to % or other unit of measure such as $\frac{mg}{m^3}$, an appropriate unit conversion factor can be supplied.

The unit conversion factors are normally set at the factory to scale concentrations to the customer's desired units of measure.

Please consult Ametek if a different unit of measure is required.

Dual-range naming convention

By convention, if the analyzer is configured to have both a high range and a low range calibration for a species, the species name for the low range is in lower case letters (eg: so2) and the high range is in upper case (eg: SO2).

UV99xx Advanced Analysis Panel

	H2S	ABC	COS	DEF	H2		
Included? (Y/N)	Yes	No	Yes	No	No	No	No
Multiplication factor	0.7500	0	0.2500	0	0	0	0
osstalk Correction Fact	or						
rosstalk Correction Fact	or COS						
rosstalk Correction Fact			Dilution	factor	0	٦	

Figure 42 – The Advanced Analysis panel

A few more aspects of the species analysis can be configured in the Advanced tab of the Analysis panel.

Aggregated	UV Results
Setup	

The aggregated UV concentration is the sum of each of the individual gas species concentrations times the aggregation factor for that species:

Aggregated UV Result =
$$\left(\sum_{i=1}^{7} (C_i F_i)\right) + Offset factor$$

where:

- C_i is the concentration result for UV species i
- F_i is the multiplication factor for UV species i in Figure 43

To include or exclude a species, press the "y" or "n" key to indicate "Yes" or "No", or press the spacebar to toggle between them.

If NOx analysis is selected in the Analysis Algorithm, the aggregated UV species is NOx, which is the sum of Species 2 (NOx) and Species 3 (NO) concentrations, and this control is disabled.

	H2S	SO2	SO	UV-4	UV-5	UV-6	UV-7
ncluded? (Y/N)	No						
Multiplication factor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Figure 43 – Aggregated UV analysis setup

Crosstalk Correction Factor

The Crosstalk Correction Factors are used to correct the cross interference of UV Species 3 onto UV Species 1 and UV Species 2.

They are typically used when MeSH is assigned as UV Species 3 and the MeSH correction algorithm is enabled.

Crosstalk Corre	ction Factor
	SO
H2S	0.0000
SO2	0.0000

Dilution Factor

In CEM applications with very high concentration, a dilution probe might be used to dilute the sample gas flowing into the analyzer. Each dilution probe has a Dilution Factor. This control is only visible if sampling columns have been installed.

Dilution factor	0.0000	
	I	

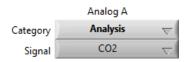
Both the UV99xx and the SEN99xx can be configured with an optional Customer I/O board that lets you perform a variety of useful functions:

Analog Outputs	let you assign up to four voltage or current loop outputs to a variety of signals.
Contact Inputs	let you assign actions to each of four contact closure inputs.
Relays	let you generate a relay contact closure in response to a variety of internal conditions.
Process Alarms	cause the analyzer to monitor up to four signals, and generate alarms if they exceed configurable limits.
SEN Process Alarms	cause the SEN system to monitor up to four signals, and generate alarms if they exceed configurable limits. Appears with the UV Bench Customer I/O board, except for SEN- only configurations, and configurations with two Customer I/O boards.

These functions all operate even if the Configurator is not connected to the analyzer.

If an analyzer contains both a UV Bench and a SEN system, each of them can have its own Customer I/O board.

In this configuration, you can configure each Customer I/O board separately. The Customer I/O board connected to the UV Bench can see signals that originate on the UV Bench board, plus up to four signals from the SEN board. The SEN board can only see signals that originate on the SEN board.


Even if there is only one Customer I/O board attached to the UV Bench, up to four signals from the SEN board can be monitored and used for analog output and process alarms.

Customer I/O Panel – Analog Outputs

Connect	Data Analysis Bench Custom Analog Outputs Contacts Rela			n SEN Factory EN Process Alarms	1	dow Help		
Home								
System								
easurement								
		Analog A	_	Analog B	_	Analog C	Analog D	
Sensors	Category	Photometric	∇	Sensor Depek Temp	∇	Analysis 👻		
Calibration	Signal	L1-F1 abs	∇	Bench Temp	∇	H2S \bigtriangledown		
Galioration	Live signal value	-0.27286 0		17.0 °C 0		150175.14 ppm 0	375.0 mm Hg -100.00	
Bench	High scale	50		30		110	100.00	
	Zero Calibration (mA/V)	4.000		1		4.000	0	
Analysis	Span Calibration (mA V)	20.000		5		20.000	5	
ustomer I/O	Output type	4 - 20 mA	∇	1 - 5 V		4 - 20 mA 🤍	0-5V 🗸	
mple System	Output level on system failure	Use signal	∇	High scale	∇	Use signal 🔍	Mid scale 🤝	
Logging	Clamp to min/max?							
Alarms						(Calibration	
						1	Zero Calibration	
							Span Calibration	
Show ditional Charts							25% Span Check	
							50% Span Check	
Print								
Help							75% Span Check	
Window	Show SEN to UV Trans	fer Details?						
Selective UnDo								
Prefs								

Ametek 99xx analyzers can be configured with an optional Customer Input / Output system, which allows up to four analog output channels to be configured.

Sample System signals are only available if the optional Sample System Interface board is installed. SEN signals are only available if the optional SEN board has been installed.

The pop-up menus at the top of the panel let you select from a large number of signals. The specific signals that are available depends on how you have configured the analyzer, but generally includes the measured gas concentrations, lamp PMT values, sensor readings, track & hold readings, and sample system temperatures:

	Analog A
Category	Sensor $ abla$
Signal Live signal value Low scale High scale Zero Calibration (mA V) Span Calibration (mA V)	✓ (none) Board Temp Bench Temp Cell Temp Heater temp Cell Press
Output type	Flow rate O2
utput level on system failure	02 T&H
Clamp to min/max?	O2 Temp Motor speed Filter wheel

Scaling

You can (and should) map the signal of interest into the voltage or current range of the output channel.

	Analog A
Category	Sensor $ abla$
Signal	Flow rate 🛛 🦯
Live signal value	0.20 L-per-min
Low scale	0
High scale	50.00
Zero Calibration (mA V)	4.01
Span Calibration (mA V)	20.02
Output type	4 - 20 mA 🛛 🤝
utput level on system failure	Use signal assignment 🤝
Clamp to min/max?	

Figure 45 – Scaling an analog output signal

Here, the measured gas flow rate will be mapped to a current loop range. The range of 0..50 litres/minute will be scaled to fill the 4..20 mA range of the output channel. Values outside that range will be clamped to the specified output range if *Clamp to min/max?* is checked.

Output Type

Output type 0 - 5 V 🤝

You can set the analog output signal type to any of:

- 0..5 V
- 1..5 V
- 0..20 mA
- 4..20 mA

If changing a channel's output setting from voltage to current, or current to voltage, the corresponding dip switch on the Customer I/O board must first be changed to the required setting, followed by changing the Output Type on the screen. Refer to the **Customer I/O** board drawing in the analyzer User Manual.

If the output Type is changed, the channel must be re-calibrated.

The 4–20 mA outputs are electrically isolated.

The low end of each analog output range can be non-zero.

Calibrating Analog Outputs

To obtain the best accuracy from the analog output signals, you can check the linearity of each channel.

Calibration

Zero Calibration
Span Calibration
25% Span Check
50% Span Check
75% Span Check

Click any of the Calibration buttons to generate a calibration signal:

Zero Calibration
Span Calibration
25% Span Check
50% Span Check
75% Span Check

Read the actual voltage or current level at the analog output terminal for the Zero Calibration and Span Calibration, and enter those values in the Zero Calibration (V|mA) and Span Calibration (V|mA) rows.

The 25%, 50%, and 75% span check readings are not recorded in the analyzer, but can be used to manually confirm linearity of the output channel using a voltage or current meter.

Click the selected Calibration button again to deselect it and return the analog output system to normal operation.

If a calibration has been initiated from the analyzer's front panel, the appropriate button will be illuminated here (but the Calibration LED at the bottom of the main window is not).

	Analog A		Analog B		Analog C		Analog D	
Category	Sensor	∇	Analysis	∇	SEN Analysis	∇	SEN Sensors	∇
Signal	Flow rate	∇	H2S	∇	со	∇	SEN Sample pressure	∇
Live signal value	0.20 L-per-min		149446.31 ppm		14975.113 %		375.1 mm Hg	
Low scale	0		0		0		0	
High scale	50.00		250		10		800	
Zero Calibration (mA V)	4.01		1.000		4.000		0.000	
Span Calibration (mA V)	20.02		5.000		20.000		5.000	
Output type	4 - 20 mA	∇	1 - 5 V	∇	4 - 20 mA	∇	0 - 5 V	∇
Output level on system failure	Use signal assignmen	t $ abla$	High scale	∇	Use signal assignmen	t $ abla$	Mid scale	∇
Clamp to min/max?	\checkmark		\checkmark		\checkmark			

Figure 46 – Calibrating analog outputs

High Scale

The value, in engineering units, that should correspond with the maximum output of the channel (nominally 20 mA for current loops, and 5 V for voltage outputs).

Zero Calibration (V|mA)The actual (measured) voltage or current when the output is set to
zero scale during the Zero calibration procedure.

To measure current, it may be necessary to add a precision sampling resistor across the current loop, and measure the voltage drop across the sampling resistor. In this case, the current in mA is:

$$I = \frac{V}{R}$$

where:

I is the current in amps V is the voltage drop across the sampling resistor R is the sampling resistor value in ohms

Span Calibration V mA)	The actual (measured) voltage or current (mA) when the output is set
	to full-scale during the Span calibration procedure.

Assigned data reading Displays the current value of the signals, in engineering units.

99xx Integrated

Models

For example, if the Channel 1 signal is the SO2 concentration in PPM, and the maximum expected SO2 concentration is 1000 PPM, you would set the Full-Scale value for channel 1 to 1000. This means that when the SO2 concentration is 1000 PPM, the current will nominally be 20 mA, and when the SO2 concentration is 0 PPM, the current will nominally be 4 mA.

The next step is to measure the actual current produced at the nominal current levels of 4 mA and 20 mA (which you generate by clicking the appropriate button). The values you measured with a current meter go into the Zero Calibration (mA) and Span Calibration (mA) lines.

If a 99xx analyzer has been configured with both a UV Bench and a SEN board, you can also choose SEN analysis or sensor signals, in the same way that you select signals from the UV Bench.

However, there are some limitations: only four signals can be transferred from the SEN board to the UV board, but the Analog Output and Process Alarm functions can both use SEN signals. So it's possible to run out of SEN signals.

The Configurator will automatically select one of the four channels that transfer signals from the SEN board to the UV board, but you can also control the signal assignments yourself by checking *Show SEN to UV Transfer Details:*

Show SEN to UV Transfer Details?

A signal assignment matrix appears:

	SEN Register Assignments								
	Analog Outputs Process Alarms					rms			
SEN 99xx to UV 99xx		Α	В	C	D	1	2	3	4
SEN Sample pressure	∇							\boxtimes	
CO2	∇		\boxtimes						
SEN Air / Block / Plate temp	∇			\boxtimes					\boxtimes
(none)	∇								

Show SEN to UV Transfer Details?

Figure 47 – SEN Signal Assignment Matrix

In the SEN Signal Assignment Matrix, each of the four SEN to UV data transfer channels is a row of the table. You can assign any SEN signal to that channel using the pop-up menus on the left. You can then set the checkboxes to assign that signal to any combination of analog output channels and process alarms. Your changes are reflected in the selection menus at the top of this panel and the Process Alarm panel.

If you do this in the "normal" way, by simply selecting SEN signals from the Category and Signal menus in the same way that you select UV Bench signals, the SEN Signal Assignment Matrix is updated automatically.

If you try to assign a fifth SEN signal to either an analog output channel or a process alarm, a message lets you know that you've run out of SEN to UV channels.

	Analog A		Analog B		Analog C		Analog D
Category	Photometric	∇	SEN Sensors	∇	SEN Sensors	∇	SEN Sensors
Signal	L1-F1 abs	∇	SEN Sample flow rat	e 🗸	SEN Sample pressure	∇	SEN Sample pressure
Live signal value	-0.06618		-1.25 I / min		375.1 mm Hg		375.1 mm Hg
Low scale	0		0		0		-100.00
High scale	25.00		20.00		123.00		100.00
Zero Calibration (mA V)	4.000		4.000		4.000		4.000
Span Calibration (mA V)	20.000		20.000		20.000		20.000
Output type	4 - 20 mA	∇	4 - 20 mA	∇	4 - 20 mA	∇	4 - 20 mA
Output level on system failure	Use signal	∇	Use signal	∇	Use signal	∇	Use signal
Clamp to min/max?							
			EN Register Assi	-		Са	libration
			• •		larms		Zero Calibration
SEN 99xx to	DV 99XX	Α	B C D 1	2 3	<u> </u>	15	Span Calibration
SEN Sample flow rate	∇					H	
SEN Sample pressure	\sim					4	25% Span Check
(none)	∇						50% Span Check
(none)	V						75% Span Check

Figure 48 – Analog Output Panel with SEN Signal Assignment Matrix

Customer I/O Panel – Contact Inputs

Analog Outputs Contacts	Relays		
			Refresh Values
	Action Assignment	Current State	
Contact input 1	Zero UV	∇	
Contact input 2	Span H2S	∇	
Figure 49 – Contact I	nputs panel – Ametek 9900 ^{RM}		
Analog Outputs Contacts	Relays Process Alarms		
			Refresh Values
	Action Assignment	Current State	
Contact input 1	Manual Zero UV	∇	
Contact input 2	Manual Span H2S	∇	
Contact input 3	Manual Zero UV & O2	∇	
Contact input 4	Full Auto-CAL	∇	

Figure 50 – Contact Inputs panel – Ametek 99xx

The optional Customer I/O module for the Ametek 99xx provides four dry-contact inputs. A number of actions can be assigned to each of them:

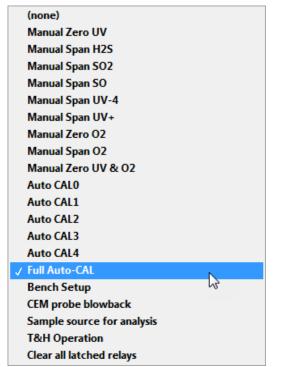


Figure 51 – Contact assignments with optional Customer I/O module

The Current State LEDs to the right of each pop-up menu are illuminated (in red) if the contact is currently closed.

Ametek 9900^{RM} and 9900^{WM} models only provide two contact inputs, which can trigger the following actions:

(none)	
Zero UV	
✓ Span H2S	
Span SO2	
Span SO	
Span UV-4	
Span UV+	
Zero O2	
Span O2	
Zero UV & O2	
Bench Setup	
Sample source for analysis	
T&H Operation	
Figure 52 – Contact assignments - Ame	etek 9900 ^{RM}

Customer I/O Panel – Relays

Figure 53 — Customer I/O Relays

UV99xx Models

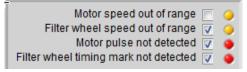
Ametek UV99xx models configured with the optional Customer I/O board contain five configurable relays (one if a Customer I/O board has not been installed, in which case it acts like a 9900^{RM}).

Each of them can be triggered by any combination of several conditions:

Relay 1 Indication & Action:

Fault Warning Calibration Bench setup in progress	
Process alarms invalid Process alarm 1 Process alarm 2 Process alarm 3 Process alarm 4	
Reserved Reserved Reserved	
Reserved Reserved Energize if triggered Latching	

Status Code Triggers


Faults and Warnings are triggered by any of the three Status Code Triggers in the upper part of the panel:

Status Code 1 Trigger Status code 3 Status Code 2 Trigger ALC high error 🔽 Bench board temperature sensor error 🔽 Motor speed out of range 🔽 Bench temperature sensor error 🔽 Filter wheel speed out of range 🔽 ALC low error 🔽 🥥 ALC setpoint error 🔽 Cell temperature sensor error 🔽 Motor pulse not detected ∇ Bench board temperature too high 🔽 Filter wheel timing mark not detected 🔽 Bench setup error 🔽 Bench temperature too high Reserved Reserved Cell temperature too high Reserved Reserved $\overline{}$ Bench board temperature too low Reserved Reserved Bench temperature too low 🔽 Reserved Unstable reference PMT signal Lamp 1 high voltage error Analog out A out of range or invalid Cell temperature too low Cell pressure range error Lamp 2 high voltage error 🔽 Analog out B out of range or invalid Lamp 1 current error Analog out C out of range or invalid Flow rate range error ∇ O2 sensor error Lamp 2 current error 🔽 Analog out D out of range or invalid Oven heater temperature sensor PMT high voltage range error Analog output initialization failure PMT data range error 🔽 Reserved Reserved Reserved PMT data reception error Excessive span-drift ∇ Internal communication error PMT data not error 🔽 Excessive zero-drift

For each item within a Status Code Trigger, you can:

- Include the condition (check the checkbox)
- Treat the conditions as a Warning (set the LED to amber)
- Treat the condition as a Fault (set the LED to red)

For example, here are the first four items in Status Code 1 Trigger:

Motor speed out of range will be ignored, because the checkbox has been left unchecked.

Filter wheel speed out of range will trigger a Warning condition, because the checkbox is checked, and the LED is amber (click the LED to toggle it between amber and red).

Motor pulse not detected will trigger a Fault condition.

Filter wheel timing mark not detected will also trigger a Fault.

Here, Relay 1 will be triggered if either a Fault or a Warning occurs:

Relay 1 Indication & Action: Fault 🔽 Warning 🗹 Calibration Bench setup in progress Process alarms invalid Process alarm 1 🔽 Process alarm 2 Process alarm 3 Process alarm 4 Reserved Reserved Reserved Reserved Reserved Energize if triggered Latching

Relay 1 will also be triggered if Process alarm 1 is present. If a Process alarm is present, but neither Fault nor Warning states are triggered by the Status Code Triggers, the legend will show Relay 1 as "Energized - Other", and the LED will be green.

If Relay 1 should be triggered for Faults but not for Warnings, simply uncheck Warning.

Relay State

You can see which relays are currently triggered:

Relay1 energized Relay 2 energized Relay 3 energized Relay 4 energized Relay 5 energized

The LEDS are illuminated if the relay has been energized, and grey otherwise. They are color-coded to indicate the severity of the condition that the relay is signaling:

\varTheta = Energized - Fault Energized - Warning 🥥 = Energized - Other = Not energized

SEN99xx Status Relays

If an optional SEN99xx board has been installed, status conditions on the SEN99xx board can also trigger the relays on the Customer I/O board.

You can see and set them by selecting SEN99xx Status Codes:

- UV99xx Status Codes
- SEN99xx Status Codes

The SEN99xx Status Codes become visible:

Analog Outputs	Contacts	Relays	Process Alar	ms S	SEN99xx Process Alarms		
UV99xx Sta	tus Code 1 T	riggers		UV99>	xx Status Code 2 Triggers	UV99xx Status Code 3 Triggers	
	er wheel spe	ed out of ra se not dete ark not dete Rese Rese Rese	cted 🔽 🍝		ALC high error ALC low error ALC setpoint error Bench setup error Reserved Reserved Unstable reference PMT signal V	Bench board temperature sensor error Bench temperature sensor error Cell temperature sensor error Bench board temperature too high Cell temperature too high Bench board temperature too low Bench temperature too low Bench temperature too low Sench temperature too low	Experimental Refresh Example Example
	Lamp 2 hig Lamp	gh voltage () 1 current (error 🔽 🥥 error 🔽 🥥 error 🔽 🥥 error 🔽 🥥	Ana Ana	alog out A out of range or invalid [] alog out B out of range or invalid [] alog out C out of range or invalid [] alog out D out of range or invalid []	Cell temperature too low 🕑 🥥 Cell pressure range error 🗹 🍛 Flow rate range error 🗌 🥥 O2 sensor error 🗌 🥥	
		lata range (reception (error 🔽 🍝	A	nalog output initialization failure 🖓 🌢 Reserved 🗌 🍛 Excessive span-drift 📄 🍛 Excessive zero-drift 📄 🍛	Oven heater temperature sensor 🖓 🗣 Reserved 🗌 🧿 Reserved 🗌 🥥 Internal communication error 🗌 🥥	

Both the UV99xx and the SEN99xx status code triggers are active.

9900^{RM}

Ametek 9900^{RM} analyzers and 99xx analyzers that do not contain a Customer I/O board contain one configurable relay. It can be triggered by any combination of the following conditions:

Relay 1 indicates:

Fault	
Warning	E
Calibration in progress	E
Bench Setup in progress	

The three Status Code triggers operate in the same way as they do for 99xx models.

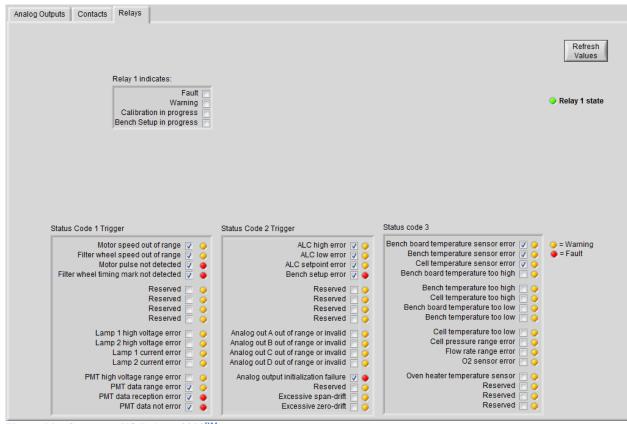


Figure 54 – Customer I/O Relays, 9900^{RM}

Customer I/O Panel – Process Alarms

alog Outputs Contacts Relay	s Process Alarms	SEN	V Process Alarms					
	Alarm 1		Alarm 2		Alarm 3		Alarm 4	
Category		∇	Photometric	∇	Photometric		Photometric	∇
	L1-F1 abs	-	L1-F3 abs		L1 FE also		L1-F5 abs	× .
Signal	LI-FI dDS	∇						_
		× .	LIFI 3 dbs	∇	L1-F5 abs	$-\nabla$	LI-FD abs	∇
Live Signal Value	-0.00443		-0.01989		-0.07744		-0.07744	∇
	-0.00443 40.05							∇
Live Signal Value			-0.01989		-0.07744		-0.07744	∇
Live Signal Value ON threshold	40.05		-0.01989 5.70		-0.07744 8.60		-0.07744 330.00	

Process Alarm Alarm Health: 🧶 Invalid

An Ametek 99xx analyzer, if equipped with the optional Customer I/O module, can monitor up to four signals while the analyzer is in normal operation. It is not necessary for the Configurator to be connected.

Alarm 3 Bench temperature 🗸

The specific signals that can be monitored depend on how the analyzer has been configured, and which optional components have been installed. In general though, it includes all of the measured UVabsorbance species concentrations, photometric data, sensor data, and track & hold signals.

Alarm Limits

ON threshold	2.50				
OFF threshold	2.00				
Trigger delay (sec)	2				
Assigned data reading	0.045				
Current state	Off				

Separate ON and OFF thresholds are provided, so you can provide some hysteresis to prevent repeated triggering of alarms when the signal level is close to the alarm threshold. For the same reason, you can require the condition to be continuously present for some period of time before an alarm is asserted.

If the ON threshold is higher than the OFF threshold, the alarm is considered to be a HIGH limit alarm. If the ON threshold is lower than the OFF threshold, the alarm is treated as a LOW alarm limit.

You can also see the current value of the signal that you selected from the pop-up menu for that alarm, and whether the alarm is currently asserted. Just as with Analog Outputs, SEN signals can be monitored, provided that the optional SEN board has been installed. A maximum of four SEN signals can be monitored by the UV Bench, as discussed in the Analog Outputs section on page 2-63.

Customer I/O Panel – SEN99xx Process Alarms

If a UV99xx analyzer has been configured with both the optional Customer I/O module and a SEN99xx board, a tab appears that lets you configure process alarms on the SEN99xx board:

Analog Outputs Contacts Relays Process Alarms SEN99xx Process Alarms										
										Refresh
		SEN99xx Alarm 1		SEN99xx Alarm 2		SEN99xx Alarm 3		SEN99xx Alarm 4		
	Category	SEN Sensors	∇	SEN Sensors	∇	SEN Sensors	∇	SEN Sensors	∇	
	Signal Assignment	SEN Sample pressure	∇	SEN Sample flow rate	∇	SEN Oven Heater temp	∇	SEN Air / Block / Plate	∇	
	Alarm name	Apex		Beta		Cataly		Draft		
	Live signal value	0.1 kPa		737755.251/min		110.1 °C		108.5 °C		
	ON threshold	150.0		25.00		101.0		42.0		
	OFF threshold	75.0		10.00		55.0		26.0		
	Trigger delay (sec)	0		0		0		0		
	Current state	Off		Off		Off		Off		

Figure 55 – SEN99xx Process Alarms

The process alarm processing occurs on the SEN99xx board, so you are not limited to the four channels that transfer SEN99xx values to the UV99xx. Alarm processing occurs even when the Configurator is not connected to the analyzer.

The four process alarms that you can configure in this tab are in addition to the process alarms that you configure in the Process Alarms tab, so it's possible to set process alarms on up to eight SEN99xx signals.

The specific signals that can be monitored depend on how the analyzer has been configured, and which optional components have been installed. There are two categories: SEN Analysis (gas concentrations), and SEN Sensors (pressure and temperature sensors). The list of signals in the Signal Assignment pop-up menu changes when you change the Category.

Alarm Limits

SEN Alarm 1				
Category	SEN Sensors 🔍			
Signal Assignment	SEN Sample pressure \bigtriangledown			
Alarm name	Psamp			
Live signal value	375.0 mm Hg			
ON threshold	500			
OFF threshold	400			
Trigger delay (sec)	10			
Current state	Off			

Separate ON and OFF thresholds are provided, so you can specify some hysteresis to prevent repeated triggering of alarms when the signal level is close to the alarm threshold. For the same reason, you can require the condition to be continuously present for some period of time before an alarm is asserted. If the ON threshold is higher than the OFF threshold, the alarm is considered to be a HIGH limit alarm. If the ON threshold is lower than the OFF threshold, the alarm is treated as a LOW alarm limit.

You can also see the current value of the signals that you selected, in the *Live signal value* row.

The Ametek 99xx can be configured with an optional Sample System, which can control three temperature zones (page 2-84). Three dry contact inputs can also be monitored (page 2-82), and eight solenoids can be used for a variety of purposes (page 2-86), including automatic calibration (page 2-87).

If the sample system is attached to the UV Bench, sample conditioning columns can be controlled by the solenoids.

It's possible to configure a 99xx analyzer with two Sample Systems: one attached to the UV Bench, and one attached to the SEN system.

Sample System Panel – Status Trigger

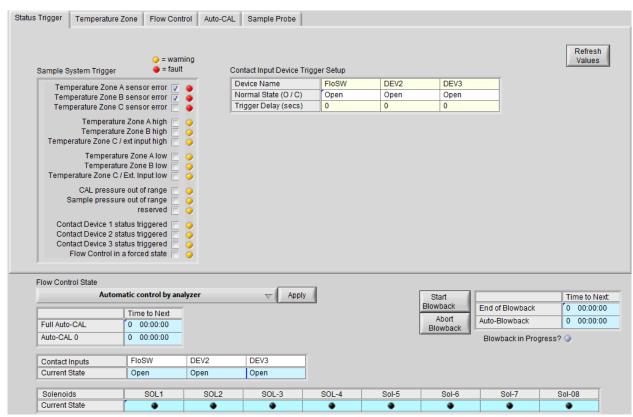


Figure 56 – The Sample System – Status Trigger panel

You can decide which internal conditions to monitor, and their severity:

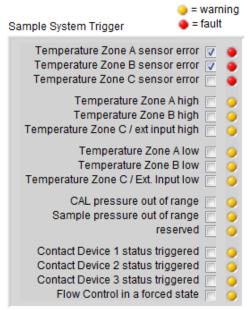


Figure 57 - Setting up faults and warnings

If an item is checked, the analyzer will monitor it. You can toggle whether the condition is to be treated as a warning or as a fault by clicking the LED. When the LED is amber, the condition is treated as a warning. When it's red, the condition is treated as a fault.

Contact Inputs

The Sample System has three dry contact inputs. You can give each of them a six character name and specify whether the normal state is open or closed (press the "o" or "c" key to set it to "Open" or "Closed").

If you specify a Trigger Delay, the contact will not be asserted until it has been the new state for the specified time (in seconds).

Contact Input Device Trigger Setup

Device Name	FIoSW	DEV2	DEV3
Normal State (O / C)	Open	Open	Open
Trigger Delay (secs)	0	0	0

Sample System Panel – Common Items

Au	itomatic control by an	alyzer	The App	ly		Start		Time to N
	Time to Next					Blowback	End of Blowback	0 00:00
Full Auto-CAL	0 03:21:00					Abort Blowback	Auto-Blowback	0 00:40
Auto-CAL 0	0 00:30:00					DIOWDACK	Blowback in Prog	ress? 🥥
Contact Inputs	Name-1	Name-2	Name-3	T				
Current State	Open	Open	Open					
Solenoids	SOL1	SOL2	SOL-3	SOL-4	Sol-5	Sol-6	Sol-7	Sol-08
Current State			۵	۵				a

Figure 58 - The Sample System panel - Common Items

The lower part of the Sample System panel contains items that are visible regardless of which tab is selected.

Flow Control State	Flow Control State
	Automatic control by analyzer V Apply
	✓ Automatic control by analyzer
	Non-sampling state
	Continuous normal sampling flow state
	Continuous auto-CALO
	Continuous auto-CAL1
	Continuous auto-CAL2
	Continuous auto-CAL3
	Continuous auto-CAL4
	Continuous CEM probe isolation
	Continuous CEM probe air flow
	Continuous CEM probe blowback
	Continuous sample conditioning column A flow
	Continuous sample conditioning column B flow
	De-energize all solenoids
	Energize solenoid 1 only
	Energize solenoid 2 only
	Energize solenoid 3 only
	Energize solenoid 4 only
	Energize solenoid 5 only
	Energize solenoid 6 only
	Energize solenoid 7 only
	Energize solenoid 8 only

Figure 59 – Flow control options

The *Flow Control State* menu lets you introduce Zero Gas or Calibration Gas into the system. You can also return flow control back to the Analyzer for normal operation.

	Control modes listed here may not be available. Only the Flow Control modes available for the analyzer you are working with are included in the pop-up menu.
Automatic Control by Analyzer	Lets the analyzer automatically determine and set the mode of operation (sampling, calibration, or backpurge) by monitoring the state of the Fault alarm relay contacts.
Non-sampling state	The Sample System is inactive (shut in, shut off, or in backpurge).
Continuous normal sampling	If the optional sample conditioning columns have been installed, the "continuous normal sampling" flow control state will switch the columns as configured in the Sample Column tab (page 2-82 – registers #922-#924).
Continuous auto-CAL	Continuous auto-CALx flow state, where x can be 04.
CEM probe	If installed, the CEM probe can be forced into continuous isolation, flow, or blowback. In the "continuous CEM probe blowback" flow control state, the blowback air will be pulsed as configured in the Sample Probe tab
Sample Column	Flow through the sample system can be forced to either of the sample conditioning columns.
Solenoids	You can force all of the solenoids to be de-energized, or you can energize them selectively.
Timers and Contact State	You can also see when the next calibration or blowback is scheduled to occur, and the current state of the contact inputs.
Auto-CAL timers	Time to Next Full Auto-CAL 0 03:21:00 Auto-CAL 0 0 00:30:00
	The time to the next full auto calibration, or auto-CAL 0 is shown in

The time to the next full auto calibration, or auto-CAL 0 is shown in format: days hours:minutes:seconds.

Depending on the analyzer you are working with, certain Flow

	Name-1	Name-2	Name-3
Current State	Open	Open	Open

You can see the current state of each contact, but not whether it's currently in the normal or active state.

Solenoids	SOL1	SOL2	SOL-3	SOL-4
Current State	۲	۲	۲	

Similarly, you can observe the state of each of the 8 solenoids (not all pictured above).

If a sample conditioning column has not been installed (which allows a CEM probe to be connected), you can initiate or abort a CEM probe

Blowback State

Solenoid Status

blowback, see when the current blowback will end, and when the next one will start. The time format is: days hours:minutes:seconds.

Start			ne to ivext.
Blowback	End of Blowback	0	00:00:10
Abort Blowback	Auto-Blowback	0	00:40:00
DIOWDACK	Blowback in Progress?	•	

Figure 60 – CEM probe blowback

Sample Column Switch

If a Sample Conditioning Column has been installed, you can see which column is current active (or "Neither"), and when the next automatic Column Switch will occur:

Time to Next Column Switch 52 s Current Active Column B

The time remaining to the next automatic sample conditioning column switch is in seconds by default, but you can edit the unit of measure to any time unit by right-clicking the unit of measure and selecting your preferred temporal unit of measure.

Sample System Panel – Temperature Zones

Status Trigger	Temperature Zone	Flow Control	Auto-CAL	Conditioning Columns		
Sample S	ystem Temperature Zo	one Setup				
Temp	erature Zone Names	Column	Pre-1	recyc		
	Setpoint (°C)	35	25	40	Zone C temperature	RTD
	Kp (°C)	1	2	2	/ External input setting	 External Input
	Ti (sec)	30	10	20		
	Nominal Value (°C)	41.0	42.0	43.0		
H	leater Duty Cycle (%)	100	100	100		
	Present Reading (°C)	13.5	14.6	-34.8		
	System External Input S External Input Name	etup				
	Engineering Unit					
	Low Scale					
	High Scale					
	Nominal Value					
	Low Status Trigger					

Figure 61 – The Sample System – Temperature Zone panel

The Sample System can control the temperature of three zones:

Temperature Zone Names	Column	Pre-1	recyc
Setpoint (°C)	35	25	40
Kp (°C)	1	2	2
Ti (sec)	30	10	20
Nominal Value (°C)	41.0	42.0	43.0
Heater Duty Cycle (%)	100	100	100
Present Reading (°C)	13.6	14.7	-34.8

Sample System Temperature Zone Setup

You can provide a six-character name for each heating zone.

The control algorithm is PI (proportional + integration). For each zone, you provide:

Setpoint The desired temperature, in deg C

- Kp The duty cycle changes as a Proportion of the difference between the current temperature and the setpoint. Ametek suggests leaving this at the factory setting.
- Ti The Integral constant in PI, expressed as an integration time constant. The Ti value helps to prevent slow temperature drift away from the setpoint. Ametek suggests leaving this at the factory setting.

The analyzer can be configured to use either:

a) An RTD to measure and control the Zone C temperature, or

b) An external transducer that produces a voltage or current output

Switch SW4 on the Sample System Interface board determines the temperature input type, which is shown on the screen as a radio button. Modbus register 893 contains the switch setting: 0 = RTD

1 = External analog input

To switch from one to the other, it's necessary to physically change switch SW4.

External Temperature

If SW4 has been set to "External", the External Input Setup table becomes active:

Sample System Temperature Zone S	Setup
----------------------------------	-------

Temperature Zone Names	Zone1	Zone2	
Setpoint (deg C)	50.00	50.00	
Kp (deg C)	25.00	30.00	
Ti (sec)	10	30.00	
Nominal Value (deg C)	10.00	25.00	
Duty Cycle (%)	0	0	
Present Reading (deg C)	23.77	22.89	

Sample System External Input Setup

External Input Name	Zone-3
Engineering Unit	deg C
Low Scale	-10.00
High Scale	50.00
Nominal Value	25.00
Low Status Trigger	15.00
High Status Trigger	40.00
Present Peading	24.92
Present Reading	34.82

Figure 62 – External temperature setup

Note that if an external temperature measurement is used for Zone 3, the analyzer will not attempt to control the temperature.

Sample System Panel – Solenoids

Solenoid Name	Sample	Zero	Span1	Sol-4	Sol-5	Sol-6	Sol-7	Sol-8
Non-Sampling State								
Normal Sampling Flow								
Auto-CAL0 Flow								
Auto-CAL1 Flow			\checkmark					
Auto-CAL2 Flow								
Auto-CAL3 Flow								
Auto-CAL4 Flow						\checkmark		

Figure 63 – The Sample System – Solenoids panel

The Sample System contains 8 solenoids, which can allow some actions to be carried out automatically.

Non-Sampling State	The analyzer energizes the checked solenoids in this row during warm-up and upon detecting a fault.
Normal Sampling Flow	The analyzer energizes the solenoids that are checked in this row after warming up or completing an auto-CAL action, and upon all faults being cleared.
Auto Calibration	If auto calibration has been enabled (see Auto Calibration on pages 2- 37 and 2-87), this table specifies which solenoid(s) will be activated to enable Zero Gas to flow for Auto-CAL 0, and to allow Span Gas flow for Auto-CAL 1, 2, 3, and 4.
	It is possible to actuate more than one solenoid for any of the Auto- CAL actions.

Sample System Panel – Auto-CAL

s Trigger	Temperature Zone	Flow Control	Auto-CAL	Sample Column					
								Refresh	
Sample Su	stem Auto-CAL Setu				🗸 = Span			Values	-
Sample Sy		Auto-CAL 0	Auto-CAL 1	Auto-CAL 2	Auto-CAL 3	Auto-CAL 4			
None to A	djust								
H2S				V					
SO2									
SO						V			
UV-4							Sarmple return/flush delay	5	٦
UV-5							Periodic full auto-CAL interval	24	1
UV-6							Periodic auto-CAL 0 interval		-
UV-7									
UV+							Start-up repeated auto-CAL0 interval	20	
O2 includ	ed	V	1						
O2 Cal typ	pe	Zero 💿	Zero 🔘	Zero 🔘	Zero 🔘	Zero 🔘			
		Span 🔘	Span 💿	Span 🔘	Span 🔘	Span 🔘			
Duration ((sec)	20	20	20	25	30			

Figure 64 – Sample System Panel – Auto-Cal

If the optional Sample System module has been installed, automatic calibrations can be performed at regular intervals.

Auto-CAL Setup

Auto-CAL Setup				🗹 = Span	
	Auto-CAL 0	Auto-CAL 1	Auto-CAL 2	Auto-CAL 3	Auto-CAL 4
Verify (do not adjust)					
H2S		\checkmark			
ABC					
COS				\checkmark	
DEF					
H2					
Agg					
Osygen included?			\checkmark		
Oxygen CAL type	Zero 🔘	Zero 🔘	Zero 🔘	Zero 🔘	Zero 🔘
	Span 🔿	Span 🔵	Span 🔿	Span 🔵	Span 🔵
Duration (sec)	60	65	70	75	72

Sample return/flu Periodic full auto-CAI Periodic auto-CAL (Start-up repeated auto-CAL

Figure 65 – Auto Calibration setup

You can define up to five automatic calibrations, and select which species are to be calibrated for each of them. In general, it will be necessary to actuate valves to allow the appropriate Zero Gas or Span Gas to flow through the analyzer. These are controlled by solenoids, and you can define which solenoids are activated for each of the Auto-CALs using the Flow Control tab, which is described in the previous section on page 2-86.

Auto-CAL 0 is used for Zero Gas calibration of all species.

The Oxygen rows are disabled if no oxygen sensor has been configured.

Note: If a zero calibration is performed for a Paramagnetic or Electrochemical Oxygen sensor, the Zero gas must be Nitrogen.

Auto-CAL Timers	Sarmple return/flush delay	5	S						
	Periodic full auto-CAL interval	24	h						
	Periodic auto-CAL 0 interval	120	min						
	Start-up repeated auto-CAL0 interval	20	min						
Sample return/flush delay	The analyzer waits this long be sample gas to fill the system a:		6						
	fault conditions or CEM probe								
	Similarly, it waits this long for sample system, including the s	· ·	-						
Periodic full auto-CAL interval	Set the time interval to 0 to disable the corresponding auto-CAL function.								
	While this is expressed in hour unit of measure ('h') to select	•							
Periodic auto-CAL 0 interval	Your environment determines Gas calibration. You can performonitor the Zero-CAL drift to automatic Zero-Gas calibration if desired.	orm a mai determir	nual Zero periodically, and he how often to perform an						
	Set to 0 to disable periodic Zer	ro Gas ca	libration.						
Start-up repeated Auto- CAL 0 interval	The analyzer can automatically calibration as necessary during	• •	1						

Configuring the Analyzer | 2-88

Sample System Panel – Sample Columns

Sample System Conditionir	ng Column Setup							🗸 = Energised
Solenoid Name	Zero	Sample	Span1	Sol-4	Sol-5	Sol-6	Sol-7	Sol-8
Column A Flow								
Column B Flow					\checkmark			

Column Switching Interval 60 s (0 to disable auto-column switching) Figure 66 – Sample System Panel – Sample Columns

If optional sample conditioning columns have been installed, you can specify how frequently the analyzer should switch from one sample system conditioning column to the other, and which solenoids should be actuated to accomplish the switch.

SEN99xx Sample System

993x Serial #9932											- 0	
	ata Analysis Bench Cu	stomer I/O San	ple System	SEN Factory	Window He	р				1		
Connect	UV Bench SEN											=
	Status Trigger Temperature	Zone Flow Contro	Auto CAL	1								-
Home	status mager remperature.	tone now contro	AUTO-CAL								99xx U\	+ ۷
System									Refr	9932WM	-alpha-1	
Joystem			= warning						Refr	Run Time		
Measurement	SEN Sample System Trigg	jer	🥚 = fault	SEN Cont	act Input Device Tri	gger Setup				6 22:46:		Hai Cł
	Temperature Zen	e A sensor error		Device N	lame Ac	e Bob	Chris					-
Sensors		e B sensor error				sed Closed	Open					
		e C sensor error		Trigger [elay (secs) 11	12	13				Save to NV M	len
Calibration	Temperate	ure Zone A high 📃	0									
	Temperat	ure Zone B high 🔽	9									
Bench	Temperature Zone C	'Ext. input high 📃	•									
Analysis		ture Zone A low 📃										
	Tempera Temperature Zone C	ture Zone B low									(none)	
Customer I/O		–									(none)	-
	CAL press	ure out of range 🗹 ure out of range 🗌	2									
Sample System	Sample press	reserved									(none)	-
	Contrast Device 1	status triggered									. ,	-
Logging		status triggered										
Alarms	Contact Device 3	status triggered 📃	9								(none)	
Alainis	Flow Co	ntrol not AUTO	9									-
	SEN Flow Control State										(none)	-
Show		on-sampling stat	-	T AP							(none)	_
dditional Charts	Time to Next	ion-sampling stat	e	Ap	ply							
Print	time to Next	Time to Next								SEN	Oven Heater	1
Print	Full Auto-CAL	0 00:00:00									115.0 °C	-
Help	Auto-CAL 0	0 00:00:00									110.0 0	
window		0								SEN Ai	ir / Block / Pla	ate
Selective UnDo	Contact Inputs	Ace	Bob	Chris							113.38 °C	_
UIIDO	Current State	Closed	Closed	Open								
Prefs	Solenoids		S2	\$3	Sally	\$5	SEN6	SEN7	SEN-8		(none)	
	Current State	•	32	35	Sally	55	SEIND	SEIN/	SEIV-0			
Exit	Concilionate		-	-	-	-	-	-	-			

The Sampling system can be attached to the UV Bench, the SEN board, or a sampling system can be attached to each of them.

In this last case, a tab appears to let you select which sampling system to view and control.

If the sampling system is attached to the SEN board, there will be no sample conditioning columns.

Alarms

You can monitor any of the Dashboard Variables, to see if they are within limits that you set.

These variables are only monitored while the Configurator is connected to an analyzer. Please note that they are independent of the analyzer's Process Alarms described on page 2-74.

Connect	Alarm Limits Active Alarms Alarm Histo	iry							AMETE
Home	Alarm Limits								Serial Number
System	Register Name	Reg #	Low Alarm	Low Warn	Value Now	High Warn	High Alarm	Get Limits	Ametek 12345 Run Time
Measurement	H2S concentration	1	-5	0	-0.053	.2	1	Revert	14 21:31:45 📈 Hardv
incasarcinent	SO2 concentration	3	-10	-5	-0.454	.5	1		Cita
Calibration	SO concentration	5	-5	0	-0.030	50.1	1	Save Limits Default Alarm Settings.csv	
Calibration	UV-4 concentration	7	3	0	0.089				
Bench	NDr concentration	15	-3	-2	0.263	0	1	Save Limits As	Save to NVRAM
Denen	Aggregated UV result	17	0	0	-0.023	.5	1		
Sensors	Bench board temperature	67		30	30.32	30.5	31		
Sensors	Bench temperature	69	20	25	30.47	30	40		
Customer I/O	Cell temperature	71	20	25	27.10	27	35		
Customer I/O	Cell pressure	73			0.0				
Analysia	Flow rate	75			0.00				H2S
Analysis	O2 concentration	77			0.00				-0.053 PPM
	O2 sensor temperature	79			0.00				0.035 11 m
T&H	L1-F1 msr-PMT signal	169			8.483				502
	L1-F2 msr-PMT signal	170			0.000				
Sample System	L1-F3 msr-PMT signal	171			9.326				-0.454 %
	L1-F4 msr-PMT signal	172			0.000				
Logging	L1-F5 msr-PMT signal	173			9.591				<u> </u>
	L1-F6 msr-PMT signal	174			0.000				-0.030 PPM
Alarms	L2-F1 msr-PMT signal	175			0.000				
	L2-F2 msr-PMT signal	176			0.000				NDr
	L2-F3 msr-PMT signal	177			0.000				0.263
M	L2-F4 msr-PMT signal	178			6.273			Acquisition Interval (secs)	
Show Charts	L2-F5 msr-PMT signal	179			0.000			4	L1-F1 msr-PMT
	L2-F6 msr-PMT signal	180			0.000				8.483 V
Print	L1-F1 ref-PMT signal	181			6.897				0.403 V
Help	L1-F2 ref-PMT signal	182			0.000			Start Checking	Bench Temp
Wnidow	L1-F3 ref-PMT signal	183			6.135			R A	
	L1-F4 ref-PMT signal	184			0.000		T	Stop Checking	30.47 degC
Prefs									Read Terr
3 Exit									Board Temp 30.32 degC

The dashboard variables are defined in the Modbus Register Maps, which are discussed in Appendix II.

When you first view this panel, all of the dashboard variables appear in the table shown above, along with their register numbers, and current values (the light blue column).

For each row, you can enter both alarm and warning limits. If you don't wish to use warning levels, just leave them blank. If you don't wish to check a particular variable, just leave the limits blank.

When you've defined a set of alarm limits, you can save them as a spreadsheet format file by clicking either *Save* or *Save As*. You can also revert this table to its last saved values.

The next time you wish to monitor the same set of alarm limits, you can retrieve them:

Start Checking

When you're ready to start checking the alarm limits, set the interval between checks and click *Start Alarms*.

Acqui 2	sition Inte	erval (secs)
	Start Alarms	
	Stop Alarms	

As long as you are running the alarm checking process, the alarm status LEDs in the dashboard will be updated, and the *Range Checking*? LED at the bottom of the Configuration window will be green.

😑 Range Checking?

You can modify the alarm limits or add new items without having to cycle alarm checking off and back on.

Stop Checking

Click *Stop Alarms* when you wish to stop checking for alarm conditions:

Acquisition Interval (secs)

While this tab is displayed, the configurator reads every possible Dashboard variable so that it can display their current values. This adds to the Modbus traffic load, so you may wish to navigate to a different panel or a different tab in the Alarms panel when you're done using this panel.

Active Alarms tab

Alarm History tab

Alarm Limits	Active Alarms Alarm History				
a	Active Alarms	Reg #	Live Value		
() o	SO2 Concentration	1	107	High - Alarm	
	H2S Concentration	2	418	High - Alarm	•

Figure 68 – Currently active alarms

The Active Alarms tab shows which variables are currently in either a warning or alarm state, and their current values.

You can also monitor the history of when variables enter or leave alarm or warning states by selecting the *Alarm History* tab:

Configuring the Analyzer | 2-92

₽						
Alarm Limits	Active Alarms Alarm History					
	Alarm Messages		Variable	Transition value	UoM	
0	2018-02-16 2:42:07.854 PM	ОК	SO2 Concentration	58	РРМ	ĥ
	2018-02-16 2:42:07.859 PM	ОК	Track and Hold SO2	58	PPM	E
	2018-02-16 2:42:09.849 PM	High - Alarm 🧯	SO2 Concentration	85	PPM	
	2018-02-16 2:42:09.859 PM	High - Alarm	Track and Hold SO2	85	РРМ	Ι.

Figure 69 – Alarm history

This information is also logged to a spreadsheet-format file located in an *Alarms* subdirectory of the test logs directory.

The file name format is:

Serial Number – Alarm Log – Timestamp.csv

Alarm Daemon

The alarm logging processing task² is normally minimized, but you can select it from the Windows menu, or the Windows task bar:

🛃 Alarm	Daemon.vi	
	II	3
	Registers to Check	
W.	Species1 Concentration Species2 Concentration	
	Species3 Concentration	
	Track and Hold Species1	
		Retrieval Time (ms)
		157
	Alarm Processing status	
	,	

This window shows which registers are being checked, and the length of time it takes to retrieve them from the analyzer.

Naturally, the more variables you check, the longer it will take to retrieve them. This can slow the configuration screens down, and can also affect the maximum speed at which data logging can occur, even though data logging runs at a higher priority than alarm processing and configuration tasks.

² For historical reasons, background processes are often called daemons in computer parlance.

Factory Settings – Hardware Options

UV Bench Hardware Presence	SEN Hardware Presence	SEN Installed Hardware	993x Hardware Options
 Cell RTD probe Customer I/O board System interface board UV source = Hollow Cathode (HCL) Reserved Reserved Reserved Sample conditioning column Oven heater RTD Reserved Reserved Cooling fan Without UV bench 	 Inegrated Mode? Customer I/O board? Sample System board? 	Gas sample pressure sensor Gas flow sensor Air / Block / Plate RTD Oven Heater RTD Generic sensor transmitter A Generic sensor transmitter B Serial sensor is RS485 Serial sensor 1 Serial sensor 2 Serial sensor 3 Serial sensor 4 Sample system Zone A RTD Sample system Zone C RTD Sample system Zone C RTD	Reserved Reserved Reserved TC-A sensor TC-B sensor IR-A sensor SEC sensor-A SEC sensor-B Reserved Reserved Reserved
Oxygen Sensor Type (if present)		✓ Sample system Zone C general Reserved	Reserved
	New	Serial Number	
	n 995	32WM-alpha-1	Apply
SEN Serial Number	Pass	word	

Figure 70 – Factory Settings for Integrated Configurations

The installed hardware options can be changed by selecting "Factory Settings" from the Factory menu, or by clicking *Change*. The window that appears lets you change a number of hardware configuration options (the window shown above is for integrated configurations: for UV-only or SEN-only configurations, you see one of the windows shown below).

The New Serial Number field is for use by the Ametek factory only.

Items shown as LEDs are read-only, and are shown for information only. Checkboxes can be changed, as can the Oxygen Sensor Type (if present).

For UV Bench system, the hardware options are stored as a bitmap in register 248.

For SEN systems, the hardware options are stored as bitmaps in registers 3165, 3165, and 3167.

🔁 Change Hardware Options or Serial Number		×
System Hardware Presence		
 Cell RTD probe Customer I/O board System interface board UV source = Hollow Cathode (HCL) 		
 Reserved Reserved Reserved Reserved Reserved 		
Sample conditioning column Oven heater RTD		
 ✓ Reserved Cooling fan Without UV bench 		
Oxygen Sensor Type (if present)		
New Serial Number		
9932WM-alpha-1	Apply	
Password	Cancel	

Figure 71 – Factory Settings for UV99xx Analyzers

Change SEN Hardware Options or S	Serial Number	×
SEN Hardware Presence	SEN Installed Hardware	993x Hardware Options
 Integrated Mode? Customer I/O board? Sample System board? 	 Gas sample pressure sensor Gas flow sensor Air / Plate /; Block RTD Oven Heater RTD Generic sensor transmitter A Generic sensor transmitter B Serial sensor 1 Serial sensor 1 Serial sensor 2 Serial sensor 3 Serial sensor 4 Sample system Zone A RTD Sample system Zone C RTD Sample system Zone C general Reserved 	 Reserved Reserved Reserved Reserved TC-A sensor TC-B sensor IR-A sensor IR-B sensor SEC sensor-A SEC sensor-B Reserved
	New Serial Number 19932WM-alpha-1 Password	Apply Cancel

Figure 72 – Factory Settings for SEN99xx Analyzers

3 Data Logging and Charting

Analysis data	Photometric data	Bench lamp current signal levels	Bench PMT signal levels
H2S concentration	L1-F1 absorbance	L1 base current measurement	L1-F1 msr-PMT signal
SO2 concentration	L1-F2 absorbance	L2 base current measurement	L1-F2 msr-PMT signal
SO concentration	L1-F3 absorbance	L1-F1 pulse current measurement	L1-F3 msr-PMT signal
UV-4 concentration	L1-F4 absorbance	L1-F2 pulse current measurement	L1-F4 msr-PMT signal
NDr concentration	L1-F5 absorbance	L1-F3 pulse current measurement	L1-F5 msr-PMT signal
UV+ concentration	L1-F6 absorbance	L1-F4 pulse current measurement	L1-F6 msr-PMT signal
T&H H2S concentration	L2-F1 absorbance	L1-F5 pulse current measurement	L2-F1 msr-PMT signal
T&H SO2 concentration	L2-F2 absorbance	L1-F6 pulse current measurement	L2-F2 msr-PMT signal
T&H SO concentration	L2-F3 absorbance	L2-F1 pulse current measurement	L2-F3 msr-PMT signal
T&H UV-4 concentration	L2-F4 absorbance	L2-F2 pulse current measurement	L2-F4 msr-PMT signal
T&H NDr concentration	L2-F5 absorbance	L2-F3 pulse current measurement	L2-F5 msr-PMT signal
T&H UV+ concentration	L2-F6 absorbance	L2-F4 pulse current measurement	L2-F6 msr-PMT signal
T&H O2 concentration	L1-F1 transmittance	L2-F5 pulse current measurement	L1-F1 ref-PMT signal
	L1-F2 transmittance	L2-F6 pulse current measurement	L1-F2 ref-PMT signal
	L1-F3 transmittance	· · · · · · · · · · · · · · · · · · ·	L1-F3 ref-PMT signal
	L1-F4 transmittance	Bench HV signal levels	L1-F4 ref-PMT signal
	L1-F5 transmittance		L1-F5 ref-PMT signal
	L1-F6 transmittance	msr-PMT HV measurement	L1-F6 ref-PMT signal
	L2-F1 transmittance	ref-PMT HV measurement	L2-F1 ref-PMT signal
	L2-F2 transmittance	L1 base HV measurement	L2-F2 ref-PMT signal
	L2-F3 transmittance	L2 base HV measurement	L2-F3 ref-PMT signal
	L2-F4 transmittance	L1-F1 pulse HV measurement	L2-F4 ref-PMT signal
	L2-F5 transmittance	L1-F2 pulse HV measurement	L2-F5 ref-PMT signal
	L2-F6 transmittance	L1-F3 pulse HV measurement	L2-F6 ref-PMT signal
		L1-F4 pulse HV measurement	Sensor data
		L1-F5 pulse HV measurement	Bench board temperature
		L1-F6 pulse HV measurement	Bench temperature
		L2-F1 pulse HV measurement	Cell temperature
	eviously saved selection	L2-F2 pulse HV measurement	Cell pressure
Start Acquisition	No selection.csv 🗸	L2-F3 pulse HV measurement	Flow rate
		L2-F4 pulse HV measurement L2-F5 pulse HV measurement	O2 concentration
Stop Acquisition Save Sel	ections 1 Acquisition interval (secs)	L2-F5 pulse HV measurement L2-F6 pulse HV measurement	O2 sensor temperature
	,	L2-Fo pulse HV measurement	Sample System data
C Log retro	actively	Refresh	
Start Logging	file every day?	Names	Zone1 reading Zone2 reading

Figure 73 – The Logging Setup panel – UV Bench Signals

The 99xx Configurator can read your choice of variables at regular intervals, and optionally log them to a spreadsheet file.

You can also display powerful graphs.

Start by selecting the "Logging" panel of the Configurator.

JV Logging Setup SEN Lo	gging Setup	
SEN Measurement Re	sults SEN Diagnostics SEN Sample System data	1
CO concentration CO2 concentration H2 concentration H2 concentration H2S-1 concentration H2S-2 concentration Ethane concentratic CH4 concentration Ethane concentratic C3H8 concentration T-H CO2 concentrati T-H H2 concentrati T-H H2 concentrati T-H H2S-2 concentrati T-H H2S-2 concentrati T-H H2S-2 concentrati T-H H2S-2 concentrati T-H H2S-2 concentrati T-H Methan concer T-H Ethane concent T-H Ethane concent T-H CH4 concentrati T-H C3H8 concentrati	CO raw signal CO2 raw signal CO2 raw signal H2 reference H2 differential N H1 reference H1 differential N H2S-1 raw signal Methan raw signal Methan raw signal Methan raw signal Methan raw signal Methan raw signal SEN Sample flow rate SEN Sample pressure SEN Sample pr	
Select items to a Ctrl+click or shift-	cquire. •click to select multiple items.	
Start Acquisition	Recall a previously saved selection	
Start Acquisition	No selection.csv 🗸	
Stop Acquisition	Save Selections 1 SEN Acquisition interval	
Start Logging	Log retroactively Refresh New log file every day? Values	
Stop Logging	Open a log file g	

Figure 74 – Logging Setup panel — SEN Signals

Data Acquisition

The first step is to start reading the signals that you are interested in. In Figure 73 and Figure 74 above, you can see a list of signals, grouped into several *categories*. The specific signals that appear in each of these categories are specified in the Modbus Register Map (see Appendix II for details).

In Figure 73, most of the available signals have been selected. You can select any combination you'd like. Within each category, shift-click and control-click extend your selection.

You can select any combination of UV Bench and SEN signals.

Recall a previously saved selection							
Start Acquisition	Everything.csv 🗸						
Stop Acquisition	Save Selections	1	Acquisition interval (secs)				

If you've made a selection of signals that you'd like to use again, click the *Save Selections* button to save them as a spreadsheet file.

All of your previously saved selection sets are contained in the popup menu:

Everything.csv 🗸

As soon as you choose an item from this menu, your saved selections are restored. Pick *No Selection* to unselect everything. In many cases, you might just choose to acquire all of the available signals. This option is predefined as "Everything.csv".

Decide how often you'd like the signals to be acquired (in the figure above, it's set to every second), and click *Start Acquisition*.

The data acquisition task is started immediately.

You can configure and troubleshoot the analyzer while data acquisition is in progress, but your response times may suffer, depending on how many signals you are acquiring, and how frequently they are read from the analyzer.

Once you've started data acquisition, a "Strip Charts" tab and a "More Strip Charts" tab appear. They are described on page 3-7.

Stop Acquisition

Stopping Data Acquisition

Modbus Traffic

Stop Acquisition doesn't destroy the in-memory buffers used for charting, so any charts that are running will simply stop updating.

Modbus traffic is prioritized into three different queues:

- Variables being logged (highest priority)
- Variables being written to the analyzer
- Configuration tasks (lowest priority)

When you start data acquisition, a new Modbus Traffic monitor window is created. It's initially minimized, but you can select it from the Windows task bar, or from the Windows menu:

WW Modl	bus Traffic monitor for ZD-900-10cm kev	
	Logging variables to read	
0	Species1 Concentration	
	Species2 Concentration	
_	Species3 Concentration	
	Species4 Concentration	
	Variables to write	
e e		
a	Other variables to read	
0		

This window lets you see the variables being sent to the Modbus data acquisition process. In the example above, we see that the concentration values are being requested by the data logging process.

Recall a Previous

Session

It's not necessary to log data in order to graph it.

Start Logging	Log retroactively New log file every	day?
Stop Logging	Open a log file	8

Once data acquisition has started, you can begin logging. All of the variables being acquired will be logged in .csv spreadsheet format in the Test Logs directory (see Appendix III – Preferences to see where that is).

You'll be asked to enter a name for the log file(s):

File name for	UV9xx logs		×
	k a name for the lo e you enter.	g files. The date wi	ill be added
File Na	ne		
	OK	Cancel	

There are a couple options:

Log retroactively
New log file every day?

The analyzer's serial number is prepended to the file name you specify, to help you keep track of which log files are from which analyzer.

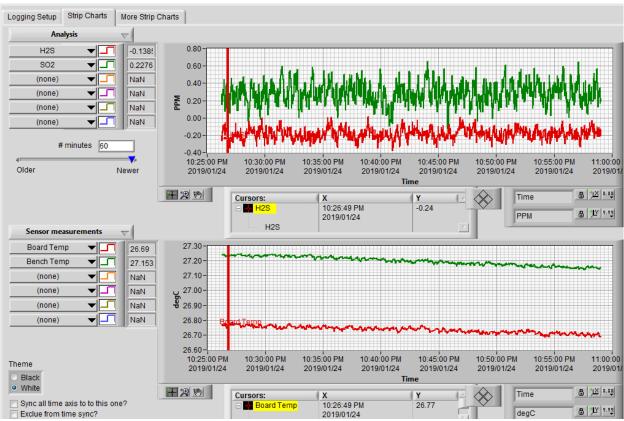
Log retroactively	It's possible that you want to start logging but wish that you'd started it earlier. If you select <i>Log retroactively</i> , the data in the circular memory buffer that is used for graphing will be written out to the log file first, allowing you to log variables that were acquired before you
	started logging.
New log file every day?	You can split a long session into calendar days. This helps to keep the

You can split a long session into calendar days. This helps to keep the file sizes manageable, and provides some insurance against computer mishaps.

If you haven't started data acquisition, you can open a previously saved log file, and graph the data:

Open a log file 🧧

The name of the file you selected is shown to the right of the button. This is handy for off-line demos (see the chapter on Demo Mode for more details). Stop Logging


Stop Logging does just what you'd expect. Data acquisition continues, so stopping data logging doesn't affect graphing.

Charting

Once you've started data acquisition, a *Strip Charts* tab and a *More Strip Charts* tab appear, and you can start charting.

Strip Charts

The *Strip Charts* tab lets you quickly create a couple of synchronized strip charts:

Figure 75 – Simple Strip Charts

This tab gives you the same controls as the more advanced strip charts described in the next section, but is designed to require fewer mouse clicks and be a bit easier to use.

You can use them either alone, or in conjunction with the flexible charting options on the *More Strip Charts* tab.

The graph controls are described in detail in the following sections.

More Strip Charts

The *More Strip Charts* tab lets you create arbitrary sets of charting windows that you can arrange and size to suit your requirements. You can save and restore any number of sets of windows.

There are several predefined sets of windows – when you select one of them, the windows will be sized and arranged to fit your largest monitor.

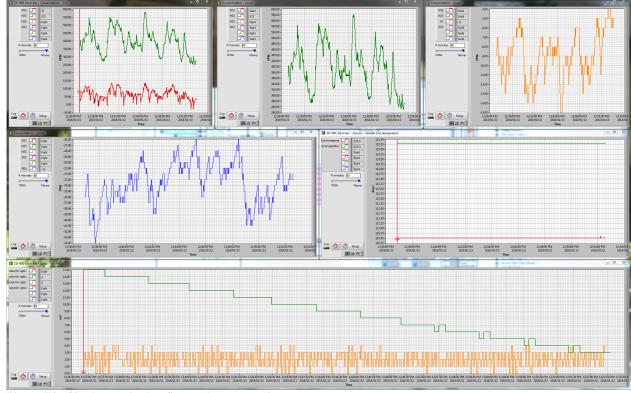


Figure 76 - Six charts, sized to fit your largest monitor

You can also create you own sets of charts. In the More Strip Charts tab, you can choose either one of the predefined sets of charts, or one of your own saved window sets:

Logging Set	up St	ip Charts	More Strip Charts			
Charts not r	unning	Charts ru	unning			
Pr	edefined	window se	ets			
C	One small chart					Start
R	ecall a pi	eviously sa	aved window set		_	
	/ 5 easy	pieces.csv			9	Start
	Custor	2-2-1.csv		3		
	test wi	ndow save.	csv			
	Three	wo One.cs	v			

Figure 77 – Predefined and User-Defined Sets of Charts

Charts not running Charts running Predefined window sets One small chart Recall a previously saved window set V 5 easy pieces.csv Custom 2-2-1.csv test window save.csv Three Two One.csv	Logging S	etup	Stri	p Charts	More Strip Char	ts		
One small chart Recall a previously saved window set Start Custom 2-2-1.csv test window save.csv	Charts no	t runnir	ng	Charts ru	inning			
One small chart Recall a previously saved window set Start Custom 2-2-1.csv test window save.csv								
One small chart Recall a previously saved window set Start Custom 2-2-1.csv test window save.csv		Dec de E						
Recall a previously saved window set ✓ 5 easy pieces.csv Start Custom 2-2-1.csv Start test window save.csv Start		Predefi	neav	window se	ts			
✓ 5 easy pieces.csv Start Custom 2-2-1.csv Start test window save.csv Start		One small chart						Start
Custom 2-2-1.csv test window save.csv		Recall	a pre	eviously sa	aved window set			
test window save.csv		🗸 5 ea	asy p	ieces.csv			9	Start
		Cus	tom	2-2-1.csv		3		
Three Two One.csv		test	t win	dow save.	csv			
		Thr	ee Tı	wo One.cs	v			

A New Set of Charts

The first time you use the configurator, there won't be any saved chart sets, so you would choose one of the pre-defined layouts:

Charts not Charts not Charts not Five charts (2 / 2) Five charts (3 / 2) Six charts (3 / 2) Six charts (3 / 2) Six charts (3 / 2) Nine charts (3 / 3) Recall a previously saved window set	Logging Se	One small chart		1	
Four charts (2 / 2) Five charts (3 / 2) Six charts (2 / 2 / 2) Six charts (3 / 3) Six charts (3 / 2 / 1) Nine charts (3 / 3 / 3)	Logging St				
Six charts (2 / 2 / 2) Six charts (3 / 3) Six charts (3 / 2 / 1) Nine charts (3 / 3 / 3)	Charts not	Four charts (2 / 2)			
Six charts (2 / 2 / 2) Six charts (3 / 3) Six charts (3 / 2 / 1) Nine charts (3 / 3 / 3)		Five charts (3 / 2)			
Six charts (3 / 3) Six charts (3 / 2 / 1) Nine charts (3 / 3 / 3)					
Nine charts (3 / 3 / 3)					
Nine charts (3 / 3 / 3)		✓ Six charts (3 / 2 / 1)			
Recall a previously saved window set		Nine charts (3 / 3 / 3)			Start
Recail a previously saved window set		Pocall a proviously caved window set			
		Recall a previously saved window set			
Everything on Four Charts.csv 🗸 Start		Everything on Four Charts.csv	∇		Start

The charts will be tiled and sized to fill your largest monitor. If you have more than one monitor that is the same size, the charts will be placed on a secondary monitor.

Each of them will initially show the configuration options:

\lambda 9932WM-alpha-1 - Sensor measurements - Cell Temp		- 🗆 X
Save Chart Setup	Sensor measurements Cell Temp Cell Press (none) (none) (none) (none)	 Sync all time to this chart? Exclude from time sync? ✓ Cursor at end? Theme Cursor Legend O Dark ● Hide
# minutes 30	(none) 🔻	● Light ○ Show
Log 🟠 🥸 Chart	9932WM-alpha-1 - Sensor mea	asurements - Cell Temp

The upper pop-up menu lets you select a logging group (these are defined in the Modbus Register Map, and are discussed in Appendix II):

A 9932WM-alpha-1 - Sensor measu	Analysis Photometric	×	
Save Chart Setup Save Chart Setup As # minutes 30	✓ Sensor measurements Bench PMT signals Bench PMT HV & Lamp HV Bench Lamp Current Sampling System SEN Analysis SEN Diagnostics	 Sync all time to this chart? Exclude from time sync? ✓ Cursor at end? Theme Cursor Legend Dark ● Hide Light ○ Show 	
Older Newer	Window Title 9932WM-alpha-1 - Sensor mea:		

Figure 78 - Choosing a logging group to chart

You can select up to six different signals from the six pop-up menus below the logging group:

À 9932WM-alpha-1 - Sensor measu	- 🗆 X			
Save Chart Setup	Sensor measurements Cell Temp ▼ Cell Press ▼ ✓ (none) Board Temp Bench Temp	 Sync all time to this chart? Exclude from time sync? ✓ Cursor at end? Theme Cursor Legend O Dark ● Hide 		
# minutes 30 4 Older Newer	Cell Temp Cell Press Flow rate O2 O2 Temp	Light		
Log 🟠 🌺 Chart	Window Title 9932WM-alpha-1 - Sensor mea	surements - Cell Temp		

Figure 79 – Choosing signals to chart

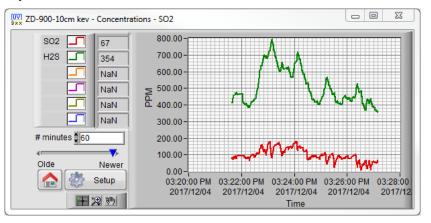
Chart Themes

It's possible to change many aspects of the chart appearance, but two main visual schemes have been predefined:

Selecting *Black* gives you a black background with brightly colored traces.

Selecting White gives you a white background with darker traces.

Both themes have the same functionality, but the white theme is better suited to printing on most printers.


Two checkboxes are devoted to synchronizing the time axis of all of the charts that are currently running:

- Sync all time axis to to this one?
- Exclue from time sync?

If you check *Sync all time axis to this one?*, all of the other charts will follow any changes you make to the X-axis on this chart. It's OK to select this option on more than one chart. If you do, each of them will act as the master if you change its time axis.

If you check *Exclude from time sync?*, this chart will ignore time axis changes that are initiated from other charts.

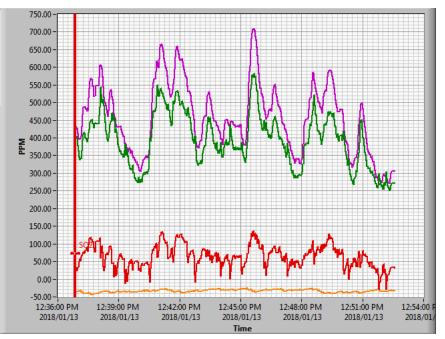
If you click "Chart", the chart becomes visible:

You can resize the chart windows, move them around, and save the new layout (along with what you want to have logged in each window). To save the current group of chart windows, select *Save Chart Setup* in the main window:

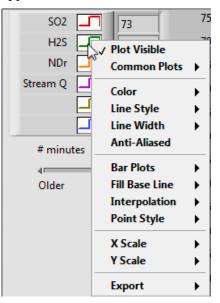
Logging Setup S	trip Charts
Charts not running	Charts Running
	Save Chart Setup
	لي Save the currently running set of chart windows.
	Stop Charting

Chart Options

Plot Legend


The charts have many configuration options.

The upper left-hand portion of the graph window shows the plot legend:


SO2 🗖	31
H2S	273
NDr 🗖	-32
Stream Q	305
	NaN
	NaN

The *Short Name* of each signal is shown at the left. These short names are defined in the Modbus register map, and you can change them to suit your needs. For more details, please refer to Appendix II — The Modbus Register Map.

Live values are displayed at the right. The units of measure can be seen on the Y-axis scale:

If you click inside one of the coloured legend boxes, a pop-up menu appears:

From here, you can configure the appearance of the plot traces, and export the underlying data values to the clipboard or to an Excelformat file.

Data Scrolling

As long as data acquisition is running, all of the variables being acquired are accumulated in circular buffers in main memory. You can specify how large you wish these buffers to be in *Preferences* (see Appendix III – Preferences):

In most cases, these buffers hold much more information than is convenient to view at once, so each chart has a control that lets you specify which portion of the circular buffer you wish to view:

# minutes	60	
4		
Older		Newer

If you change these settings in one of the graphs, they will be reflected in every running graph.

By the way, data logging isn't affected by the size of the circular buffers. The only limit on the number of data points you can log is your available disk space.

Log

Cursors

If you are using a single monitor computer, the chart windows are likely to fill the entire screen.

If you click the Home button on any of the graphs, they will all be hidden, and the configuration window will become visible if it was hidden.

To hide the configuration window (on a single monitor system) and view the graphs again, click "Show Charts" on the configuration window.

On multi-monitor systems, "Show Charts" also switches the main configurator window to show the main charts.

The graphs continue to run while the configuration window is visible, and you can make them visible individually by selecting them from the Windows Task Bar.

The Log LED is illuminated if data is being logged to a spreadsheet file (you control this from the Logging Setup tab).

You can create as many cursors as you want. They can be configured to snap to a particular trace, to snap to any trace, or to be unconstrained.

The easiest way to create a cursor is to click anywhere in a graph. A cursor is created and moved to the time value of the mouse location. This cursor is initially set to snap to the first signal you've set up for that graph. A similar cursor is created in every graph window.

As long as you keep the primary mouse button pressed, the *live values* area will display the values at the timestamp where you clicked.

This is done for every graph that is running, including the main charts.

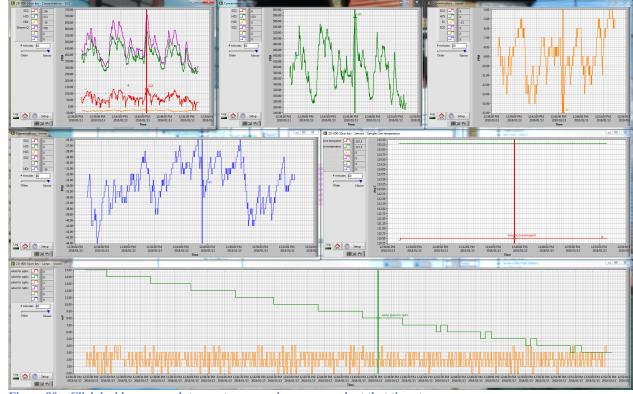


Figure 80 - Click inside any graph to create cursors in every graph at that timestamp

You can drag any of the cursors, and the cursors in all of the other graphs will follow along. As you drag, the live values area in every window shows the values at the cursor location. Note that you have to release the mouse button, and then click again, to "grab" the cursor.

The Graph Palette

The Graph Palette has three main controls, which determine what the cursor does:

The active control is "depressed".

The first tool is for moving cursors around the graph.

The second tool lets you refine what's displayed on the graph. It has a fly-out menu containing selection tools:

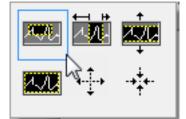


Figure 81 – Graph Selection Tools

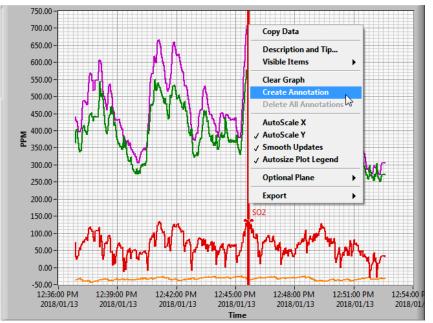
• The marquee tool lets you draw a rectangle around an area of interest in the graph. When you release the mouse button, the

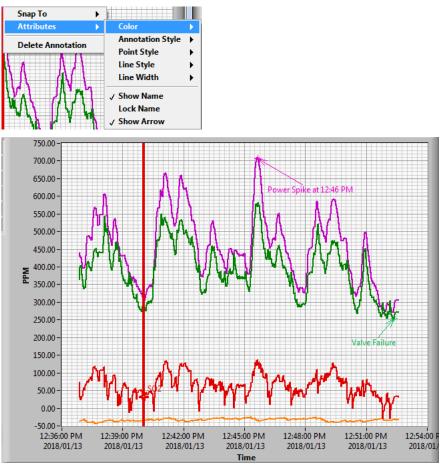
graph is redrawn to fit your selection. X-axis and Y-axis autoscaling are turned off.

- The second tool lets you pick a time range. X-axis auto-scaling is turned off. If you selected time-axis synchronization, the other graphs are updated to show the same time range.
- The third tool lets you select a Y-axis range. Y-axis auto-scaling is turned off.
- The fourth tool resets the zoom to its original values.
- The fifth tool zooms in around the cursor, and the sixth tool zooms out.

To turn auto-scaling back on, you can right-click on the time axis, and select *Autoscale X*, or right click on the Y-axis, and select *Autoscale Y*.

You can also add annotations to a graph. Right-click at a point of interest, and select "Add Annotation":




Figure 82 - Annotating a graph

Create Annotation
Annotation Name
Power Spike at 12:46 PM
Lock Style
Snap to One Plot
Locked Plot
so2 💌
Hide Arrow
Lock Name
OK Cancel Help

Graph Annotations

Data Logging and Charting | 3-16

If you right-click the origin of the annotation, you can change the colour and other features of the annotation:

Cursor Legend

Hide Show

DRAF

REVIEW

If you display the Cursor Legend, a number of additional controls become visible:

For each axis, you can change the axis name. The lock icon is "locked" when the axis is being auto-scaled, and a little green "LED" is displayed on the icon to the right:

Autoscale on

Autoscale off

The effect is the same as right-clicking on an axis and checking or unchecking Autoscale.

The right-most icon lets you specify more axis options:

Time 💩 🖄 *.*	Format	•	1
PPM 💩 💯 👯	Precision	¥	√ 0
	Mapping Mode	۲	1
	✓ Visible Scale ✓ Visible Scale Label		2 3 🗸
	Grid Color	•	4 5
		_	6

The default Y-axis precision is the display precision of the first variable that you are charting. It's the display precision in the Modbus register map (you can modify it to suit your needs).

You can add additional cursors by right-clicking inside the cursor legend:

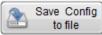
	so2 SO2	12:41:42 PM 2018/01/13	68.00	*
	Visible Items	•		7
	Bring to Center Go to Cursor		-	-
	Create Cursor	Free Free	No. 19 State	
1-11	Delete Cursor	Single-Plot		
and and		Multi-Plot	15	-

For Single-Plot cursors, you can specify which plot the cursor will snap to. This is the kind of cursor that is automatically created when you click inside the graph frame.

You can also right-click an existing cursor, and configure it to follow a specific plot:

You can also configure many aspects of the cursor's appearance:

Figure 85 – Customizing a graph axis


Figure 86 – Adding cursors to a graph

Visible Items	 •42-08 PM • 01/13 	116.00	,
Snap To Attributes	Color		1
 Attributes		•	
Bring to Center Go to Cursor	Cursor Style Point Style Line Style		
Create Cursor Delete Cursor	Line Width Show Name		÷

You can use the Configurator without being connected to an analyzer. To do so, you'll need a configuration file for the specific analyzer that you wish to simulate.

The easiest way to do this is to connect to a working analyzer with the same configuration that you wish to simulate while offline, and save the configuration to a spreadsheet-format text file.

In the Connect panel, click:

and save the configuration file with a name that describes the configuration. This configuration file contains the current value of every Modbus register in the attached analyzer.

Offline mode

Now you can use the Configurator offline. Start the Configurator, and select "Offline" from the Modbus Connection menu:

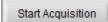
Modbus Connection

Off-I	ine	(file)	∇
-------	-----	--------	----------

Next, click:

and select the configuration file that you created while you were online.

At this point, you can view any of the panels. You can change values and they will be remembered the next time you want to view that data element. You can even initiate actions, such as calibration, but they will not complete successfully, because offline mode does not attempt to simulate the response you would get from a live analyzer.


Preparing for Offline
ChartsBefore using charts offline, it's necessary to collect information over
a period of time, so that there will be something to graph when you
are offline.

Start by going to the Logging panel, and selecting the signals that you wish to acquire. Here, we suggest that you acquire all of the available signals every second:

Logging Setup Strip Charts More Strip	p Charts		
Analysis data	Photometric data	Bench lamp current signal levels	Bench PMT signal levels
H2S concentration	L1-F1 absorbance	L1 base current measurement	L1-F1 msr-PMT signal
SO2 concentration	L1-F2 absorbance	L2 base current measurement	L1-F2 msr-PMT signal
SO concentration	L1-F3 absorbance	L1-F1 pulse current measurement	L1-F3 msr-PMT signal
UV-4 concentration	L1-F4 absorbance	L1-F2 pulse current measurement	L1-F4 msr-PMT signal
NDr concentration	L1-F5 absorbance	L1-F3 pulse current measurement	L1-F5 msr-PMT signal
UV+ concentration	L1-F6 absorbance	L1-F4 pulse current measurement	L1-F6 msr-PMT signal
T&H H2S concentration	L2-F1 absorbance	L1-F5 pulse current measurement	L2-F1 msr-PMT signal
T&H SO2 concentration	L2-F2 absorbance	L1-F6 pulse current measurement	L2-F2 msr-PMT signal
T&H SO concentration	L2-F3 absorbance	L2-F1 pulse current measurement	L2-F3 msr-PMT signal
T&H UV-4 concentration	L2-F4 absorbance	L2-F2 pulse current measurement	L2-F4 msr-PMT signal
T&H NDr concentration	L2-F5 absorbance	L2-F3 pulse current measurement	L2-F5 msr-PMT signal
T&H UV+ concentration	L2-F6 absorbance	L2-F4 pulse current measurement	L2-F6 msr-PMT signal
T&H O2 concentration	L1-F1 transmittance	L2-F5 pulse current measurement	L1-F1 ref-PMT signal
	L1-F2 transmittance	L2-F6 pulse current measurement	L1-F2 ref-PMT signal
	L1-F3 transmittance		L1-F3 ref-PMT signal
	L1-F4 transmittance		L1-F4 ref-PMT signal
	L1-F5 transmittance	Bench HV signal levels	L1-F5 ref-PMT signal
	L1-F6 transmittance	msr-PMT HV measurement	L1-F6 ref-PMT signal
	L2-F1 transmittance	ref-PMT HV measurement	L2-F1 ref-PMT signal
	L2-F2 transmittance	L1 base HV measurement	L2-F2 ref-PMT signal
	L2-F3 transmittance	L2 base HV measurement	L2-F3 ref-PMT signal
	L2-F4 transmittance	L1-F1 pulse HV measurement	L2-F4 ref-PMT signal
	L2-F5 transmittance	L1-F2 pulse HV measurement	L2-F5 ref-PMT signal
	L2-F6 transmittance	L1-F3 pulse HV measurement	L2-F6 ref-PMT signal
		L1-F4 pulse HV measurement	Sensor data
Select data items to acquire		L1-F5 pulse HV measurement	
and log.		L1-F6 pulse HV measurement	Bench board temperature
		L2-F1 pulse HV measurement	Bench temperature
Recall a prev	viously saved selection	L2-F2 pulse HV measurement	Cell temperature
Start Acquisition	Log Everything.csv	L2-F3 pulse HV measurement	Cell pressure
	Log Everything.csv 💎	L2-F4 pulse HV measurement	Flow rate
lart acquiring the selected registers from th	a Ogyr Bench	L2-F5 pulse HV measurement	O2 concentration
and acquiring the periodical registers normal	Acquisition interval (secs)	L2-F6 pulse HV measurement	O2 sensor temperature
Log retroa	ctively		Sample System data
Start Logging New log fi		Refresh	Zone1 reading
	le evely uay !	Names	Zone2 reading
Stop Logging Open a lo	og file 9		Zone3 reading

Figure 87 – Deciding which signals to acquire and log

Start acquisition:

and then start logging:

Save the log file with a suitable name. The name you pick will be prefixed by the serial number of the analyzer that you are connected to.

We suggest that you collect several hours of information. If you wish to demonstrate or analyze interesting events, it should prove helpful to create those conditions while you are logging.

Click "Stop Logging" when you have logged enough information:

Stop Logging

Offline Charts

While you are in offline mode, you can select the Logging panel, and open the log file that you saved in the previous step:

Open a log file

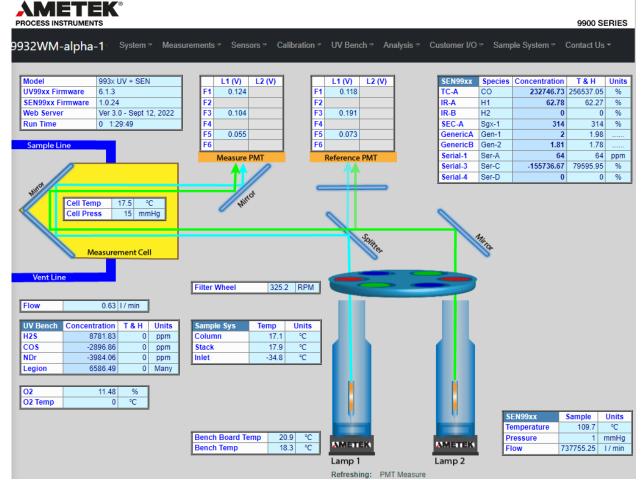
9

Now you can navigate to the "Strip Charts" tab or the "More Strip Charts" tab. You can select any combination of signals that you would like to chart, and you can restore a saved charting windows set.

All of the charting function described in the *Data Logging and Charting* chapter on page 4-3-7 can be used. The time axis will be the time that each data point was collected.

	You can pan and zoom the graphs, synchronize the time axis, drag the time axis synchronization cursor around, and graph whatever you wish (provided that it was acquired and logged while the analyzer was online).
Uses for offline mode	Offline mode can be useful for diagnosing issues at a remote site. To do this, create an appropriate configuration file and logging file, and send them to domain experts for evaluation.
	Offline mode may also be useful as a sales tool.
	It is not strictly necessary to use the Configurator to create configuration and logging files. If data has been collected in some other way, it can be formatted as a spreadsheet file in the required format (it's almost certainly easiest to start with a logging file that was created by the Configurator, and then change the contents of the data columns and timestamp column so that they contain the data of interest).

5 Web Server


The analyzer's HMI unit can be used to configure the analyzer without using the Configurator.

The HMI unit also includes a web server that serves read-only versions of all of the Configurator's screens.

Getting Started

You can connect to the 99xx analyzer using any standard web browser. Make sure that the analyzer is reachable from your browser, and enter its IP address in the web address bar.

You should see the Home screen:

Finding the IP Address

Navigating

In case you do not know the IP address of your analyzer, here's how to find it:

- 1. Tap the upper right-hand corner of the HMI screen, and then tap the lower left-hand corner within one second. If you've done this correctly, a system menu bar will appear at the bottom of the screen.
- 2. Tap the Offline button.
- 3. Tap the *Main Unit* button near the top of the display.
- 4. Tap the *Ethernet* button.
- 5. Make a note of the IP Address.

Use the drop-down menu bar near the top of the window to select webpages to display:

	PROCESS INSTRUMENTS					
9932WM-alpha	-1-	System - Measurements - Sensors -				
		UV99xx System Status				
Model	993x					
UV99xx Firmware	6.1.3	UV99xx Sample System Status				
SEN99xx Firmware	1.0.2					
Web Server	Ver 3	SEN99xx System Status				
Run Time	0 3:	Units of Measure				
		onito of modouro				

Sample Line Figure 89 – The Web server navigation bar

The navigation bar is almost exactly the same as the menu bar in the configurator. To get back to the home screen, just click the serial number at the left of the navigation bar.

The webpages look very similar to the Configurator screens, so they are not reproduced here.

Because the webpages are display-only, most of the table cells have a light blue background, indicating that they are live values.

The appearance of the pages adapts to the configuration of the analyzer, and the navigation bar only shows options that apply to the analyzer that your browser is connected to. When you first connect, it will take a few seconds to get the analyzer configuration and create the navigation bar.

HMI vs. UV99xx and SEN99xx

The webserver is part of the analyzer's HMI (front panel display), which polls the UV Bench and the SEN boards via Modbus. Some

Modbus registers, such as analysis results, are updated every two seconds, so the HMI is never more than two seconds out of date.

However, some registers are considered to be less volatile, and are only updated when the analyzer is powered up, or when an HMI page requests values from the UV Bench or the SEN board. This means that the Configurator can update these values, but the web page will continue to have old values, until the front panel screen associated with those values is requested.

So, if you see a discrepancy between the Configurator screens and the web pages, this is usually the reason. You can update the web pages by requesting the front panel display for the values in question, which forces the HMI to poll the UV Bench or the SEN board.

The 99xx Configurator software was developed using the National Instruments LabVIEW platform. When you run the full installer, the configurator software and its data files are installed, along with a LabVIEW run-time engine.

Once the initial installation has been done, a local administrator can usually simply replace the executable file 99xx.exe in {Program Files (x86)}\Ametek\99xx.

The full installer is normally in a directory named "Ametek 99xx Full Installer". Open this folder, and then open the "Volume" subfolder. From there, run "setup.exe".

Windows will ask for permission to run the installer:

With your permission, the installer will launch:

You can install the software in any convenient location, but unless you have a specific need to install it in a particular location, we suggest that you use the default locations.

A Full Install

🐙 Ametek 99XX Bench Configurator	
Destination Directory Select the installation directories.	
All software will be installed in the following locations. To install software into a different location, click the Browse button and select another directory.	
Directory for Ametek 95KX Bench Configurator C:\Program Files (x86)\Ametek\9900\	Browse
Directory for National Instruments products C:\Program Files (x86)\National Instruments\	Browse
<< <u>B</u> ack Next	<u>Cancel</u>

However, if security considerations prevent you from installing into the suggested locations, you can install the configurator software elsewhere. You will still need local administrator privileges to install the LabVIEW run-time engine, but the configurator software can be run from any location.

The data files can be installed anywhere, but you'll need to update your preferences to point to them.

The installer will place shortcuts on the computer all-users desktop, and in the all-users Start menu.

The following files are installed along with the configurator software (not including the LabVIEW run-time files):

```
Program Files (x86)
     \Ametek
          \99xx
               99xx.exe
              99xx.ini
              99xx.aliases
{Root}
      \Ametek Configurator
          \99XX
              Test Logs
                   This is where data logs are stored.
                   Alarms
                   Messages
              Saved Configurations
                   Contains undo files, and any saved analyzer
                   configurations (names and values of all Modbus
                   registers).
              Logging Selections
```

File Locations

Saves sets of variables to be acquired and logged. Chart Window Configurations Saves locations and characteristics of sets of charting windows. Alarm Settings Contains sets of alarm limits. Dashboards Saved dashboard.csv Saves the dashboard settings. Saved connection.csv Remembers your last connection.

{Root}

\ProgramData

\Ametek Configurator

 $\99xx$

9900 Register Map.csv

Defines the Modbus register map, units of measure, scaling factors, etc. See Appendix II for more information.

992x Register Map.csv

Used for analyzers that contain a SEN board for models in the 992x series.

993x Register Map.csv

Used for analyzers that contain a SEN board for models in the 993x series.

ModelID Register Map.csv

Lets the Configurator know which register maps to load..

99XX Prefs.dat

Stores the contents of the Preferences window (file locations, communication settings, etc.).

Ametek 99xx Configuration Report.dotx A Microsoft Word template for the configuration report

99xx Configurator User's Guide, Sept 2022.pdf This Guide

📙 🕑 📙 🗧 Alarms			
File Home Share View			
\leftarrow \rightarrow \checkmark \uparrow \bullet This PC \rightarrow Local Disk (C:)	> Ametek Configurator > 99XX	(> Test Logs >)	Alarms
✓ Ametek Configurator	Name	^	
✓ <mark>9</mark> 9XX	🎒 9932WM-alpha-1 - Alarm	Log - 2021-07-23.c	sv
Alarm Settings	 9932WM-alpha-1 - Alarm	-	
Chart Window Configurations	🧾 9932WM-alpha-1 - Alarm	Log - 2021-11-28.c	sv
Dashboards	Placeholder.txt		
Logging Selections			
Remote Development			
Saved Configurations			
 Test Logs 			
Alarms			
Messages			
📙 🛃 📙 🚽 99XX			
File Home Share View			
← → ∽ ↑ 🔒 → This PC → Local Disk (C:)	> ProgramData > Ametek Cor	nfigurator > 99XX	
^ Name	Date modified	Туре	Size
99XX Prefs.dat	2021-11-29 7:37 PM	DAT File	4 KB
992x Register Map.csv	2021-08-20 2:15 PM	CSV File	30 KB
🧾 993x Register Map.csv	2021-11-29 12:27 PM	CSV File	43 KB
9900 Register Map.csv	2020-04-06 4:26 PM	CSV File	53 KB
Model ID Register Map.csv	2019-08-20 11:31 PM	CSV File	1 KB

Figure 90– Data files and directories created by the installer

Appendix II – The Modbus Register Maps

The Modbus register map files contains the register numbers available in the 99xx analyzers, along with information about scaling factors and units of measure.

For detailed information about the Modbus registers used by the analyzer, please refer to document *Serial Communications Interface (Modbus) Manual Supplement* – PN 903-8652, and the corresponding documents for the SEN 99xx analyzers.

The Modbus register maps are normally installed in:

C:\ProgramData\Ametek Configurator\99xx\Model ID Register Map.csv C:\ProgramData\Ametek Configurator\99xx\9900 Register map.csv C:\ProgramData\Ametek Configurator\99xx\992x Register map.csv C:\ProgramData\Ametek Configurator\99xx\993x Register map.csv

The first of these contains information about the registers that are read to determine the model ID of an analyzer. The other register maps are specific to a UV Bench or SEN analyzer configuration.

Spreadsheet columns

	Α	В	С	D	E	F	G	н	1	J
1	Version			0	с т		J			-
2	, croiter									
3	Register Number	Register Name	Short Name	Unit Nam	Type Nam	#Bytes	# Registers	Access Level	Saved Value	Dash
4	1	Species1 concentration	Species1	*	FLOAT	4	2	RO		Yes
5	3	Species2 concentration	Species2	*	FLOAT	4	2	RO		Yes
6	5	Species3 concentration	Species3	*	FLOAT	4	2	RO		Yes
7	7	Species4 concentration	Species4	•	FLOAT	4	2	RO		Yes
8	9	Species5 concentration	Species5	*	FLOAT	4	2	RO		Yes
9	11	Species6 concentration	Species6	*	FLOAT	4	2	RO		Yes
10	13	Species7 concentration	Species7	*	FLOAT	4	2	RO		Yes
11	15	Species8 concentration	Species8	*	FLOAT	4	2	RO		Yes
12	17	Aggregated UV result	Aggregated	*	FLOAT	4	2	RO		Yes
13	19	L1-F1 absorbance	L1-F1 abs	-	FLOAT	4	2	RO		No
14	21	L1-F2 absorbance	L1-F2 abs	-	FLOAT	4	2	RO		No

By column, the spreadsheet contains:

Register Number

The Modbus register number, using standard 1-based numbering (ie: the convention used by most Modbus utilities).

Register Name

The name of the Modbus register. When these register names are displayed by the configurator, the text "Speciesn" is replaced with the species name currently configured in the analyzer (where n is the species number).

Don't change any of the names in this column, as the configurator requires these exact names.

Short Name

In most cases, the short name is what you see in the configurator screens. You can change the short names to suit your preferences. Again, the text "Species*n*" is replaced by the species name for species 1..8 (the species names are contained in Modbus registers 593-617).

Unit Name

The Si Unit of Measure. Allowable units are:

- % (percent)
- %% (forces percentage, regardless of the % vs. ppm setting)
- ppm (parts per million)
- sec (seconds)
- deg C (degrees Celsius)
- mm H2O (mm of water, gage)
- mm Hg) (mm of mercury, gage)
- RPM (revolutions per minute)
- mV (millivolt)
- mA (milliamp)
- Varies Depends on the analyzer configuration Change to your particular units of measure.

Data Type

The storage convention used by the analyzer. Do not change the values in this column.

Bytes

The number of bytes used to store the value. Do not change the values in this column.

Registers

The number of sequential Modbus registers used to store the value. Do not change the values in this column.

Access Level

Shows whether the register is read-only, write-only, or read-write. You cannot force a read-only register to be writable by changing this value, as read-only access is enforced by the analyzer.

Saved Value

When you save an analyzer configuration, the saved data file has the same format as the Modbus register file (this file). This column is used to store the saved values. The values are strings, and can contain decimal places to represent floating point numbers.

You can edit these values if you wish to set an analyzer to specific register values.

Dash

This column contains the word "Yes" for variables that can be displayed in the Dashboard section of the main screen. These can be changed to suit your preferences. The short name of every register containing "Yes" in this column is added to the pop-up menus in the dashboard.

Category

The category is for information only, and shows in general terms what the register is used for.

Logging Group

This is the logging / graphing group name. If you do not wish to be able to log or graph a particular variable, you can blank out the logging group name. You can also move a register from one logging group to another, but this may cause the register selection screen to run out of space for the new logging group (this isn't harmful, but may make it difficult to select the variables you wish to acquire).

Decimal Places

This specifies the displayed decimal precision of the variable.

Appendix III – Preferences

You can specify communication settings, set the locations where tests are to be logged, and a variety of other settings by clicking the "Prefs" button in the main window:

Settings director								
Fest logs directo	•							
C:\Ametek Cor	nfigurator\99XX\Test I	_ogs					b	
-	er definition directory						_	
C:\ProgramDa	ita\Ametek Configura	tor\99XX						
Modbus settin	gs							
Short Name	LAN	COM3	HMI		LAN	LAN		
Analyzer	UV + SEN 99xx	UV + SEN 99xx	UV + SEN 9	9xx	UV + SEN 99xx	UV + SEN	99xx	
Connection	TCP	Serial	TCP		TCP	TCP		
UV Address	101	101	101		101	101		
SEN Address	102	102	102		102	102		
TCP Address	198.161.125.99	192.168.1.98	198.161.125	.102	192.168.1.98	192.168.1.9	8	
Port name	KCOM3 ▼	K COM3 ▼	K [™] COM3	•	KCOM3 ▼	^I ∕₀COM3	-	
Baud rate	38400	38400	38400		38400	38400		
Data bits	8	8	8		8	8		
Stop bits	1 bit	1 bit	1 bit		1 bit	1 bit		
Parity	none	none	none		none	none		
outgoing Mail Se	erver				Connection via	serial gatewa	iy? 🗹	
Outgoing Mail S	erver (SMTP)			Se	end e-mail when con			
Use TLS/SS	SL? D Port				Mail server require:			
	Username					Info message ning message		🔄 Mail Test
	Password						o i [⊻]	Revert
Sender's Er	mail Address			O mn			Dark Light	
Recipient's Er	mail Address					~	arts	Defaults

Figure 91 – The Preferences Window

This window will float above any other windows until you click "OK", and will be hidden if you switch to another application.

If you have made changes, you will be prompted to save them:

12	×
Save these cha	inged preferences?
Save and Exit	Exit without Saving

In most cases, the directory settings at the top of the window should be fine as they are. If you wish to use different locations, you can either type them in, or click the little folder icon to browse to the location where you want to store the files.

Microsoft has historically recommended that files that are to be shared by different computer users should be placed in the "ProgamData" folder in the root of the boot volume. However, Microsoft now hides this directory by default, so you may wish to use a different location. By default, the installer will suggest a directory named "\Ametek Configurator\99xx" located at the root level of your boot volume.

The installer creates several subdirectories inside the settings directory. If you decide to change the location of the settings directory after installing the software, you should create the following subdirectories inside your new directory:

> Alarm Settings Chart Window Configurations Dashboards Logging Selections Saved Configurations Test Logs Test Logs \Alarms Test Logs \Messages

The user preferences are stored in {root}\ProgramData, as are the Modbus register maps. Subdirectories are also created to hold settings and test logs, in the event that your organization wishes to store them in{root}\ProgramData. If so, you simply need to change your preferences to point to that location.

Most of the time, you'll use the Preferences window to set up communication settings. You can have several of these, each of which appears in the pop-up menu in the connection window:

Off-line (demo)	
✓ USB Serial	
LAN 🗟	
Connected	Connect
	Disconnect

For each communications port you give it a name, and the Modbus node address of your analyzer:

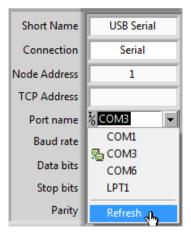
Communication

Settings

Appendix III | A3-2

Figure 92 – Picking a communications port

Modbus settings				
Short Name	USB - COM 3			
Connection	Serial			
Node Address	101			
TCP Address				
Port name	KCOM3 ▼			
Baud rate	38400			
Data bits	8			
Stop bits	1 bit			

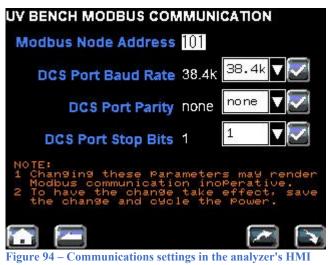


You can create more communications settings by clicking in the grey area to the right of the last one:

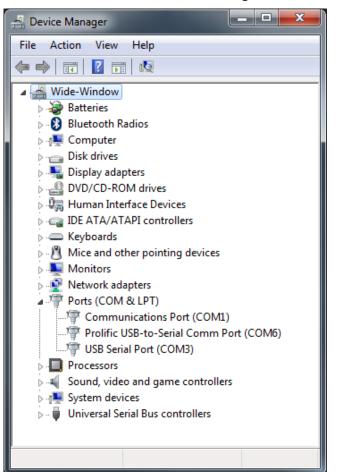
Serial Modbus

In Figure 93 above, this port will be named "USB – COM 3". It's a serial port, and the Modbus address is 1. You should create names that are meaningful for you – these are the names that appear in the pop-up menu in Figure 93 – Communications settings. For example, you could name the connections using the serial number, or the function of specific analyzers, if that is useful in your environment.

If you're not sure which serial ports are available, you can pull down the Port name menu, and select "Refresh...":


This will cause the list of available com ports to be refreshed.

The serial settings for a 99xx analyzer should normally be: 38400 baud 8 data bits 1 stop bit


no parity

If you have difficulty connecting to an analyzer, you may wish to use the analyzer's HMI to confirm that the analyzer is using the same communications settings. You can't change the analyzer's serial port settings using the Configurator – you must use the analyzer's HMI to do that:

From the analyzer's *HOME* screen press the *Config* button to view the Configuration sub-menu. Press the *UV Bench Modbus* button to view the *UV Bench Modbus Communication screen*:

If you are unsure of the Modbus address assigned to the analyzer, you can enter 255 in the Node Address field. Every connected analyzer will reply to this "broadcast address". If you are using USB serial port adapters, you can configure the port name from the Windows Device Manager:

If you expand the Ports list, you can see which ports are currently configured (note that COM1 is reserved, and can't be used by the

Appendix III - Preferences | A3-5

Configurator). You can right-click on a port, and set its properties, including the Com port name:

Prolific USB-to-Serial Comm Port (COM6) Properties					
General Port Settings Driver Details					
Bits per second: 9600					
Data bits: 8					
Parity: None					
Stop bits: 1					
Flow control: None					
Advanced Restore Defaults					
OK Cancel					

The setting here are unimportant, as the Configurator will set them. Click "Advanced...", to change the port name:

Prolific USB-to-S	Serial Comm Port (COM6) Properties		
General Port	Settings Driver Details		
	Bits per second: 9600		
	Data bits: 8		
	Parity: None		
	Stop bits: 1		
	Flow control: None		
	Advanced Restore Defaults		
A	dvanced Settings for COM6	I CONTRACTOR OF	X
	✓ Use FIFO buffers (requires 16550 compatible UART)		ок
	Select lower settings to correct connection problems.		Cancel
	Select higher settings for faster performance.		Defaults
_	Receive Buffer: Low (1)	High (14) (14)	
145	Transmit Buffer: Low (1)	High (16) (16)	
Modbus Traf	COM Port Number: COM6		

Connection via serial gateway?

If you select "Connection via Serial Gateway?", Modbus communication will use timeout values and retry values that work best if your serial connection is to a Moxa gateway installed in the analyzer chassis.

If you have a 9900RM, and your analyzer does not include this gateway, you should leave this box unchecked.

If you are using Modbus/TCP, you will normally be connected to a Modbus/TCP gateway such as an MGate MB3270. The manufacturer provides a utility that allows you to configure settings such as the IP address:

0.	Name	Model	MAC Address	IP/COM	Status	Firmware Version
1	99XX-mockup	MGate MB3270	00:90:E8:32:2F:DC	198.161.12	5.99	Ver.3.0 Build 17030713
			m			
P	evice Identification	Device Function				
	Search	Configurat	ion Load Mon	itor Log	ProCOM Mapping	Import
					Upgrade Firmware	Export
	Locate	Load Defa	ult Diagn	ose	opgrade Firmware	

Figure 95 – The MGate Manager

Adding a new connection

Modbus/TCP

To add a new communication setting, click in the first greyed-out	
column:	

Ν	Nodbus settings				
Short Name	USB - COM 3	LAN	New Connection		
Connection	Serial	TCP	✓ Serial	Serial	Serial
Node Address	101	101		0	0
TCP Address		192.168.1.101			
Port name	KCOM3 ▼	I%	KCOM3 ▼	^I ∕ ₀ COM3 ▼	™COM3
Baud rate	38400	38400	38400	<101>	<101>
Data bits	8	8	8	8	8
Stop bits	1 bit	1 bit	1 bit	1 bit	1 bit
Parity	none	none	none	none	none

Figure 96 – Adding a new communication settings

Email Alerts

To remove one, right-click on the one you wish to remove, and select "Delete Element":

١	Modbus settings						
Short Name	USB - COM 3	LAN	New se	etting			
Connection	Serial	TCP	TCF	2	Serial	Serial	
Node Address	101	101	0		0	0	
TCP Address		198.161.125.99		Reiniti	alize to Default Value		
Port name	KCOM3 ▼	I%	COM3	Cut Da	ata	M3	-
Baud rate	38400	38400	384	Copy I		<101>	
Data bits	8	8	8	Paste	Data	8	
Stop bits	1 bit	1 bit	11	Descri	iption and Tip	1 bit	
Parity	none	none	no	Insert	Element Before	none	
Outgoing Mail 9	lonior			Delete	Element		2

Outgoing Mail Server Figure 97 – Removing a communication setting

Similarly, you can add a communication setting between two existing settings by right-clicking and selecting "Insert Element Before".

The e-mail section of the Preferences window allows an automated email to be sent in the event that the data logging task fails.

Outgoing Mail Server	
Outgoing Mail Server (SMTP)	
Use TLS/SSL? 🗌 Port	25
Username	
Password	
Sender's Email Address	
Recipient's Email Address	
Recipient's Email Address	

uses a secure link layer in the ISO protocol stack).

Recipient's Email Address To use it, you will need access to an SMTP server, and appropriate credentials on the server. You can optionally use TLS/SSL (which

(Connection via serial	gateway?
Send e-r	nail when comm erro	ors occur?
Mail	server requires authe	ntication?
	Show Info r	nessages? 🗸
	Show Warning r	messages? 🗸
🖲 mm Hg	O Highlight	O Dark
○ kPa	Plain	Light
🔘 psi	Table Rows	Charts
Pressures	₿6000 # of Pro	cess sets
	Send e-r Mail mm Hg kPa psi	Show Warning r mm Hg Highlight kPa Plain psi Table Rows Pressures

You can display pressures in either mm-Hg, or kPa. Note that if you have an optional Customer I/O board installed, the scale range for

Send e-mail when comm errors occur? Mail server requires authentication? Analog Outputs, and the alarm range for Process Alarms are displayed and set in your preferred unit of measure.

Appendix III – Preferences | A3-9